AUTOMATIONWORX

.......................

Quick Start Guide

UM QS EN HFI PROG
Order No.: 2910240

Programming in High-Level Language
Using the HFIl User Interface

DO@OTIE@EO@ O coNAa @ @

INSPIRING INNOVATIONS

AUTOMATIONWORX

Quick Start Guide

Programming in High-Level Language Using the HFI User Interface

05/2007

Designation: UM QS EN HFI PROG
Revision: 01

Order No.: 2910240

This user manual is valid for:

Designation
HFI
HFI

Version
1.1x
2.0x

7473_en_01

PHOENIX CONTACT

HFI PROG

Please Observe the Following Notes

In order to ensure the safe use of the product described, we recommend that you read this
manual carefully. The following notes provide information on how to use this manual.

User Group of This Manual

The use of products described in this manual is oriented exclusively to qualified application
programmers and software engineers, who are familiar with the safety concepts of
automation technology and applicable standards.

Phoenix Contact accepts no liability for erroneous handling or damage to products from
Phoenix Contact or third-party products resulting from disregard of information contained
in this manual.

Explanation of Symbols Used

The attention symbol refers to an operating procedure which, if not carefully followed, could
result in damage to hardware and software or personal injury.

The note symbol informs you of conditions that must be strictly observed to achieve error-
free operation. It also gives you tips and advice on the efficient use of hardware and on
software optimization to save you extra work.

The text symbol refers to detailed sources of information (manuals, data sheets, literature,
etc.) on the subject matter, product, etc. This text also provides helpful information for the
orientation in the manual.

We Are Interested in Your Opinion
We are constantly striving to improve the quality of our manuals.

Should you have any suggestions or recommendations for improvement of the contents
and layout of our manuals, please send us your comments.

PHOENIX CONTACT GmbH & Co. KG
Documentation Services

32823 Blomberg

Germany

Phone +49-5235-300
Fax +49-5235-342021
E-mail tecdoc@phoenixcontact.com

PHOENIX CONTACT

7473_en_01

HFI PROG

General Terms and Conditions of Use for Technical Documentation

Phoenix Contact GmbH & Co. KG reserves the right to alter, correct, and/or improve the
technical documentation and the products described in the technical documentation at its
own discretion and without giving prior notice, insofar as this is reasonable for the user.

The same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular data sheets, installation instructions,
manuals, etc.) does not constitute any further duty on the part of

Phoenix Contact GmbH & Co. KG to furnish information on alterations to products and/or
technical documentation. Any other agreement shall only apply if expressly confirmed in
writing by Phoenix Contact GmbH & Co. KG.

Please note that the supplied documentation is product-specific documentation only and
that you are responsible for checking the suitability and intended use of the products in
your specific application, in particular with regard to observing the applicable standards
and regulations.

Although Phoenix Contact GmbH & Co. KG makes every effort to ensure that the informa-
tion content is accurate, up-to-date, and state-of-the-art, technical inaccuracies and/or
printing errors in the information cannot be ruled out. Phoenix Contact GmbH & Co. KG
does not offer any guarantees as to the reliability, accuracy or completeness of the infor-
mation.

All information made available in the technical data is supplied without any accompanying
guarantee, whether expressly mentioned, implied or tacitly assumed. This information
does not include any guarantees regarding quality, does not describe any fair marketable
quality, and does not make any claims as to quality guarantees or guarantees regarding
the suitability for a special purpose.

Phoenix Contact GmbH & Co. KG accepts no liability or responsibility for errors or omis-
sions in the content of the technical documentation (in particular data sheets, installation
instructions, manuals, etc.).

The aforementioned limitations of liability and exemptions from liability do not apply, in so
far as liability must be assumed, e.g., according to product liability law, in cases of premed-
itation, gross negligence, on account of loss of life, physical injury or damage to health or
on account of the violation of important contractual obligations. Claims for damages for the
violation of important contractual obligations are, however, limited to contract-typical, pre-
dictable damages, provided there is no premeditation or gross negligence, or that liability
is assumed on account of loss of life, physical injury or damage to health. This ruling does
not imply a change in the burden of proof to the detriment of the user.

7473_en_01

PHOENIX CONTACT

HFI PROG

Statement of Legal Authority

This manual, including all illustrations contained herein, is copyright protected. Use of this
manual by any third party is forbidden. Reproduction, translation, and public disclosure, as
well as electronic and photographic archiving or alteration requires the express written
consent of Phoenix Contact. Violators are liable for damages.

Phoenix Contact reserves all rights in the event of a patent being granted, in as far as this
concerns software of Phoenix Contact that meets the criteria of technicity or has technical
relevance. Third-party products are always named without reference to patent rights. The
existence of such rights shall not be excluded.

Windows 3.x, Windows 95, Windows 98, Windows NT, Windows 2000, and Windows XP
are trademarks of the Microsoft Corporation.

All other product names used are trademarks of the respective organizations.

Internet

Up-to-date information on Phoenix Contact products can be found on the Internet at:

www.phoenixcontact.com

Make sure you always use the latest documentation.
It can be downloaded at:

www.download.phoenixcontact.com

A conversion table is available on the Internet at:

www.download.phoenixcontact.com/general/7000_en_00.pdf

PHOENIX CONTACT 7473_en_01

http://www.phoenixcontact.com
http://www.download.phoenixcontact.com
http://www.download.phoenixcontact.com/general/7000_en_00.pdf

Table of Contents

S C 7= o T = | R 1-1
1.1 Purpose of This Quick Start GUIde...........cocieiiiiiiiiie e 1-1

1.2 HFI Interface for Data Access in the Field............ccoooiiiiiiiiii e 1-1

1.3 System REQUIEMENTSoueiiiiie e 1-2

1.4 Supported Controller Boards............c.oooiciiiiieiiiiiiee e 1-2

1.5 Software ReqQUINEMENTS..........cooiiiiiiii e 1-3

1.6 Available Example Programs in C#..........ccccoiiiiiiiiiiiee e 1-3

1.7 Additional DOcUMENTAtioNcceiiiiiiieiie e 1-3

2 Setup fOrthe HF D ..ot e e en e e 2-1
3 Example Program in CH# ... 3-1
3.1 Variable Settings (Variable Declaration)ccccccieriiiieese e 3-4

3.2 Settings for the "Controller" Class (Constructor Declaration).............c.ccccccun..... 3-6

3.3 Events From the Controllercooiuiiiiiiiiiiece e 3-8

3.4 Activating/Deactivating the Control Program (Enable/Disable the Application)3-11

3.5 Function for PCP Data Exchange (Get the PCP Data From the Application)..3-12

3.6 Closing the Application Program (IDisposable Member)............ccccovveeiiinennnee. 3-12

3.7 Function for Data Exchange (Update the Data on the Form)............ccccoeenee. 3-13

3.8 Executing the Example Program...........ccoociiiiiiiiiiiieeeeee e 3-14

4 AAAItIoNal SOFWAIEcoiiiiiiiii e 4-1
41 BUs Configuration........... .o 4-1

4.2 Process Data AdAreSSiNg......cocu e e 4-2

4.3 HFI DEVICE EXPIOTEN ..ottt 4-2

44 L0711 | 5 4-6

4.5 HF1 C0dE GENEIALON.ciiiiiiiiieitet ettt s 4-8

4.6 HET CONIIOIS ...ttt 4-11

461 Controls for the Application Programccccoovvieeiiiiiciieee e 4-11

4.6.2 Functions of the Controlscccceeiiiiiiiien e 4-12

5 RemOote DEDUGGINGueiiiiiiiiiiiiiii ettt e e e e e e e e e e 5-1
51 Remote Debug MONITONcocuiiiiiiiiee e 5-1

5.2 Accessing the Application Using Your Own Instance...........cccocovevciiniieeiineens 5-2

5.3 POSSIble Problemsoooiiiiiiii e 5-3

5.4 Alternative Methodsoiiiiiiii e 5-3

7473_en_01 PHOENIX CONTACT i

HFI PROG

ii PHOENIX CONTACT 7473_en_01

General

1 General

1.1 Purpose of This Quick Start Guide

This Quick Start Guide should enable the user to implement an application program using
an HFI (High-Level Language Fieldbus Interface), which operates all controller boards
supported by Phoenix Contact. The supported controller boards are listed in "Supported
Controller Boards" on page 1-2.

Section 3, "Example Program in C#" uses an example code in C# to illustrate how a high-
level language program can be used to access the controller boards supported by
Phoenix Contact via the "HFI" library.

The available example programs (see "Available Example Programs in C#" on page 1-3)
can be used as a basis and adapted to meet your specific requirements. For programming
in Visual Basic (VB), the C# example programs can still be used as a basis, by adapting

them to VB. Should you have any questions, please contact Phoenix Contact.

Section 4, "Additional Software" shows how to use an existing bus configuration and
additional software to integrate the 1/0 system connected to the supported hardware in
your control program.

1.2 HFI Interface for Data Access in the Field

HFI = High-Level Language Fieldbus Interface

The object-oriented and .NET-capable HFI user interface can be used by a Windows XP-
based PC control program to read and control data from the field. I/0 signals and
diagnostic data can be accessed from every .NET application via a class library. At signal
level, the HFI library supports PCI cards with direct INTERBUS master and bus couplers
with Ethernet connection and the Ethernet gateway from the Factory Line product range
(see also "Supported controller boards" on page 1-2).

The PC control program functions can be integrated easily. All data access is performed
via registered variables and diagnostic messages are processed automatically by the
classes. In addition, information can be transferred directly from the INTERBUS bus
configurator CMD (IBS CMD SWT G4 E, Order No. 2721442).

7473_en_01 PHOENIX CONTACT 11

HFI PROG

1.3 System Requirements

Table 1-1 provides an overview of the environment required for HFI 1.1x or HFI 2.0x and
the development system that is compatible for each version.

Table 1-1 System requirements for HFI
Product (Setup) Environment Development System
HFI 1.1x Windows XP +SP1, Microsoft Visual Studio 2003,
.NET Framework 1.1 + SP1 | C# 2003, VB 2003,
SharpDevelop (free of charge)
HFI 2.0x Windows XP +SP1, Microsoft Visual Studio 2005,

.NET Framework 2.0

C# 2005, VB 2005,

Visual Studio Express

(free of charge),
SharpDevelop (free of charge)

listed Microsoft programs.

Example projects are available on the Internet, e.g., at
www.codeproject.com and www.csharp.com.

It is assumed the user has experience in Microsoft Windows operating systems and the

1.4 Supported Controller Boards

Table 1-3 lists all the controller boards supported by the HFI user interface.

Table 1-2 Supported controller boards

Description Type Order No.
Controller board for PC systems with PCI bus IBS PCI SC/I-T 2725260
Controller board for PC systems with PCI 104 bus IBS PCI 104 SC-T 2737494
Ethernet/Inline bus coupler FL IL 24 BK-B-PAC 2862327
Ethernet/Inline bus coupler FL IL 24 BK-PAC 2862314
Inline bus coupler for Ethernet with eight digital inputs and four digital | IL ETH BK DI8 DO4 2TX-PAC 2703981
outputs

Inline Block 10 module for Ethernet with 16 digital inputs and ILB ETH 24 DI16 DIO16-2TX 2832962

16 digital inputs or outputs

1-2 PHOENIX CONTACT

7473_en_01

http://www.codeproject.com
http://www.csharp.com

General

IBS PCI SC I-T,
IBS PCI 104 SC-T

Other controller boards

1.5

Software Requirements

In order to work with the HFI interface for these controller boards, the following driver must
be installed on your PC: "Win2000_XP_PCI_205.exe" or later.

The driver is available on the "CD PCI DRIVER" CD (Order No. 2985589) or at
www.download.phoenixcontact.com in the area for the supported controller board.

For all other controller boards, the required drivers are installed automatically during

installation of the HFI (see Section 2, "Setup for the HFI").

1.6

Available Example Programs in C#

Table 1-3 shows which example program can be used for which controller board.

Table 1-3 Available example programs in C#
Example Name Function Supported Controller
Boards
HFI Demo CS.sIn Startup of a controller board IBS PCI SC I-T
with INTERBUS startup, IBS PCI 104 SC-T
1/0 data exchange, and PCP FL IBS SC/I-T

communication

FL IL 24 BK-B-PAC
FL IL 24 BK-PAC
IL ETH BK DI8 DO4-2TX-PAC

HFI Demo ILB CS.sIn

Startup of an Inline Block 10
module with I/O data exchange

ILB ETH 24 DI16 DIO16

1.7

Additional Documentation

The Reference Manual for the HFI user interface is only available as online help. This
online help essentially provides an overview of all available classes.

For additional information, please refer to the "Firmware Services and Error Messages"
user manual IBS SYS FW G4 UM E (Order No. 2745185).

7473_en_01

PHOENIX CONTACT 1-3

http://www.download.phoenixcontact.com

HFI PROG

1-4 PHOENIX CONTACT 7473_en_01

Setup for the HFI

2 Setup for the HFI

The setup is available on the "CD PCI DRIVER" CD (Order No. 2985589) or at
www.download.phoenixcontact.com in the area for the supported controller board.

The installation program generates all the directories required for operation and copies the
files for the HFI.

Make sure the required driver is installed on your PC (see "Software Requirements" on
page 1-3).

Notes on Software:

— In the Start menu, select "Start... Programs... Phoenix Contact... DotNet
Framework..." to access example projects and HFI tools.

— The required assemblies for the libraries are located in the following directory:
(..\DotNet Framework..\HFI DotNet\Libraries)

— The file names for the assemblies have the extension (_FX11, _FX20, etc.). This
extension indicates the .Net framework for which the relevant assembly is approved.
FX is the abbreviation for framework, the subsequent information specifies the
framework version (e.g., 11 for 1.1).

7473_en_01 PHOENIX CONTACT 2-1

http://www.download.phoenixcontact.com

HFI PROG

Structure of an HFI Application With Possible Controller Boards

HFI installation dotnet_framework_xx_hfi.exe

Windows Forms Application

Main program
(frmMain)

A

A 4

Varlnput
VarOutput

Control program
(App_xy)

FL_?Elfhce?’Eterto ller IBS_G4 controller
controller boards) (e.g., PCl card)

Win2000_XP_PCIl_205.exke (or later)

Driver interface
(Ethernet)

Driver interface
(PClI card)

Controller boards

A 4

\ 4
IBS PCI SC/I-T
FLIL 24 BK ...
IBS PCI 104 SC-T
ILETHBK ...
FL IBS SC/I-T
ILB ETH ...
Figure 2-1 Structure of an HFI application

2-2

PHOENIX CONTACT

7473_en_01

Example Program in C#

3 Example Program in C#

The example was created using Microsoft Visual Studio. If you are using another
development environment, adapt the example accordingly.

For the example, the following configuration was selected:

The FL IL 24 BK-PAC bus coupler is connected to a PC via Ethernet.

The following I/O terminals are connected to the bus coupler:

— I1BIL24 DO 16

— I1BIL24 DO 32

— IBIL24 DI 16

— IBIL24 DI 32

— IBIL24 RS 232

Explanations for the example program are given below, as well as a description of where

adaptations can or should be made.

* Open the example project via "Start... Programs... Phoenix Contact... DotNet
Framework... HFI Demo CS".

In Solution Explorer, the "References" folder contains the integrated program libraries
HFI1_Library_FX11 and HFI_Visu_FX11.

Solution Explorer - Solution 'HFI Dem.., = & X
= | & [E]
[Salution 'HFT Dema C5' (1 project)
& (& HFI Demo CS
B | References

-+ HFL_Wisu_Fx11

- «3 System

- «3 System.Data

- «3 System.Drawing

-+ Systermn.Windows. Forms
L+ System, XML

-----] App(ETH BK DI2 DO4).cs

-----] App(FL IL 24 BK).Cs

-----] App(IBS PCI 5C I-Th.cs

-----] App(ILB ETH 24 DI16 DIO16).c8

----- #] Assemblylnfo.cs

B 2] frmain.cs

Clsolution Explorer [FClass View

Figure 3-1 Integrated program libraries

e In Solution Explorer, open the source code for class "frmMain.cs".

7473_en_01

PHOENIX CONTACT 31

HFI PROG

(=]

£
Fid

[T]N

Figure 3-2

Select the "Controller" HFI class, which corresponds to the controller board used.
Remove the comment characters (/) for the corresponding entry.

The entries for the other controller boards should be commented out.

In the example, the FL IL 24 BK-PAC bus coupler is used as the controller board.

£ namespace HFI Demo

AAF <swmarys
A4 Summwary for frmMain
A </ swmar v

public class frmMain @ 3ystem.Windows.Forms.Form

{

/f Create the instance from & select controller class

/¢ TODO Please select wyou controller type
myhipplication =
myhpplication

ipp IBS_PCI_SC IT
ipp ETH BK DIS DO4

ipp IBS_FCI_SC IT():
ipp ETH BK DIS DO4():

| ipp_FL_IL_24 BK

myhpplication

ipp FL_IL 24 BK():

Lpp ILE_ETH 2% DI1g_DIOLG

myhpplication

Integrated program libraries

Lpp ILE_ETH 24 DIL16_DIOLE():

In Solution Explorer, open the class with the example program for your controller

board.

For the FL IL 24 BK-PAC bus coupler, this is "App(FL IL 24 BK).cs".

=

Solution Explorer - Solution 'HFI Dem.., = & X

&2 E| =

[P

B

Solution 'HFI Demao CS' {1 project)
| HFI Demo CS

7 References

<3 HFI_Library_Fx11

<0 HFI_Wisu_Fx11

-3 System

<3 System.Data

-3 System.Drawing

-3 System. indows. Forms
-« Systerm, XML

----- #] App(ETH BK DIS DO4).cs
FLIL 24

-----] AppiIBS PCC I-Thcs

----- #] App(ILB ETH 24 DI16 DIC16).Cs
----- #] Assemblylnfo.cs

B

i 5] frmMain.cs

Clsolution Explorer [FClass View

Figure 3-3

Opening the example program for the FL IL 24 BK-PAC

3-2

PHOENIX CONTACT

7473_en_01

Example Program in C#

£ namespace HFI Demo
{
J—] public sealed class App FL_IL_Z4 BE :IDisposable
{
] |a—wa— Variable Declaration a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wxxxxwxxxxwxxxxwxxxxwxx|
] |a—wa— Constructor Declaration a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—xa—wa—a—xa—wa—a—xa—wa—x*xwa—x*l
] |a—wa— Events From the Controller a—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—xa—wa—a—xa—wa—a—xa—wa—x*xwa—x*xl
] |a—wa— Enakle / Disakle the Application a—wa—a—a—a—wa—a—a—a—wa—a—a—xwxxxxwxxxxwxxxxwxxxxwx|
[] |1“1“1¥ et the PCP-Data From the J\.ppllcatlon 1“1“1“1“1“1“1“1“1“1“1“1“1“********************l
] |a—wa— IDisposable Menber a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—a—a—wa—a—xa—wa—a—xa—wa—a—xa—wa—x*xwa—x*l
i
_}
F_igure 3-4 Program parts of the example program

The individual program parts are described below.

7473_en_01 PHOENIX CONTACT 3-3

HFI PROG

public
public
public

3.1 Variable Settings (Variable Declaration)

* In the program, adapt the variable declaration to the bus configuration.

The variable declarations have the following parameters:

RS

VarInput MODULE 3 IN = new VarInput (0, PD Length.Word, 16,
VarOutput MODULE 2 OUT = new VarOutput (2, PD Length.DWord, 32, 0);
PCP MODULE 5 = new PCP("MODULE 5", 2);

Figure 3-5 Parameters for input and output variables
Key:

1 Byte address INTERBUS parameter

2 Process data length INTERBUS parameter

3 Bitlength of the process data item User-defined parameter

4 Bit offset of the process data item User-defined parameter

5 Communication reference (CR) INTERBUS parameter PCP

If you know the data for the INTERBUS parameters, enter it at the relevant points. If you
do not know the parameters, they can be generated. Use the HFI Device Explorer (see
"HFI Device Explorer" on page 4-2) or CMD (see "CMD" on page 4-6).

The user-defined parameters are generally specified by the user. These parameters can
be used to address the modules as an overall object or to define individual objects, which
comprise one or more bits.

The HFI Code Generator (see "HFI Code Generator" on page 4-8) can be used to
generate the source code. However, single-bit addressing is not supported here. The
modules are addressed as an overall object with the generated start address.

3-4

PHOENIX CONTACT

7473_en_01

Example Program in C#

* Adapt the variable declaration for the input variables.

/f Create the warisbles for the input data
/4 First input terminal DI 16

public VarInput IN Bit_ O = new VarInput (O, PD_Length.Word, 1, 0O}:
public VarInput IN Bit_1 = new VarInput (O, PD_Length.Word, 1, 1}:
public VarInput IN Variable = new VarInput (O, PD_Length.Word, 12, 4):

/¢ Zecond input terminal DI 32
public VarInput IN_Bytelrray = new VarInput (2, 4):

/¢ PCP terminal inputs [(R323Z terminal)
public VarInput IN RE23Z_1 = new VarInput (8, PD_Length.Word, 16, 0O):

Figure 3-6 Input variables

* Adapt the variable declaration for the output variables.

) ff Create the varisbles for the cutput data
- /4 First output terminal DO 16
public Vardutput OUT_Bit_0O = new VarCutput (0, PD_Length.Word, 1, 0O):
public Vardutput OUT_Bit_1 = new VarCutput (0, PD_Length.Word, 1, 1):
public VarCutput OUT_Variable = new VarCutput (0, PD_Length.I-IDrd, 1z, 4):
=] /¢ Second output terminal DO 32
public Vardutput OUT_Byteldrray = new VarOutput (2, 4):;
] /4 PCP terminal outputs (RSZ32 terminal)
T public VarCutput OUT_R5232_1 = new VarCutput (3, PD_Length.I-IDrd, 1a, 0O):

Figure 3-7 Output variables

* Adapt the variable declaration for the variables for PCP communication.

/f Create the warisbles for the PCP communication CR (R323Z terminal)
public PCP PCP_R3232_1 = new PCP("R3Z3Z_1", Z):

private byte[] _pcpReadBuffer = new byte[0]:
private byte[] _pepWriteBuffer = new byte[0]:

Figure 3-8 Variables for PCP communication

7473_en_01 PHOENIX CONTACT 3-5

HFI PROG

3.2 Settings for the "Controller” Class
(Constructor Declaration)

The settings for the "Controller" class are made in the constructor.
* Adapt the settings.

#region %% CONSLEUCEOr declaration Frrs s s @ s s s ara s e A A A A AR A SR AR AR AR AR TR AT R R AN

= AAF <swmarys
/4 Constructor
- A </ swmar v
= public App FL_IL 24 BK()
{
/f Create the controller with a name
Controller = new Controller FL_BE("FL IL 24 EBE"):

/¢ Settings for the controller
Controller.Description = "FL IL 24 BE for Demonstaration™;

Controller.3tartup = ControllerZtartup.PhysicalConfiguration;

Controller.UpdateProcesshataCycleTime = 20}
Controller.UpdateMailboxTime 50;

/f The Controller.Configuration property contains special configurations for the controller

£ Controller.Configuration. ControlCPT Load = false;
£ Controller.Configuration.DNS NameResolution = true;
£ Controller.Configuration.ErrLoghcotivate = true;
£ Controller.Configuration.ErrLogFilensame = @mz:hTest. log™:
Controller.Configuration.ExpertModelctivate = false:
£ Controller.Configuration.GetVersionInfo = false:
AP Controller.Configuration.UpdateControllerState = 100;
Figure 3-9 Settings for the "Controller" class

» Set the start behavior (see also Table 4-1 "Bus configuration options" on page 4-1).
In the example, "PhysicalConfiguration” is selected as the start behavior.

» Set the process data cycle time (ProcessDataCycleTime; 20 ms in the example).
e Set the update time for the mailbox (UpdateMailboxTime; 50 ms in the example).
* Set the operating mode (see also "Note on "ExpertModeActivate™ on page 3-6).

If no changes are made, the default values are set. If you remove the comment characters
(//), this activates or changes the settings.

Note on "ExpertModeActivate"

To work with the HFI, "Expert Mode" must be activated for all controller boards.

/'\ If "Expert Mode" is not activated, errors will occur during startup.

3-6 PHOENIX CONTACT 7473_en_01

Example Program in C#

Please note the following:

1. FLIL 24 BK-PAC and FL IL 24 BK-B-PAC bus couplers
In the program code, deactivate "Expert Mode" ("false"). Activate it instead via the
HFI Device Explorer (see "HFI Device Explorer" on page 4-2).

2. IL ETH BK DI8 DO4-2TX-PAC bus coupler
Activate "Expert Mode" either in the program code ("true" = default setting) or via the
HFI Device Explorer.

3. All other controller boards
Activate "Expert Mode" in the program code ("true" = default setting).

In the example, a FL IL 24 BK-PAC is used, which is why "Expert Mode" is deactivated in
the illustrated example program code.

Adding variables In the following program part, the variables, which were created and addressed above, are
added to the "Controller" class and therefore registered.

/4 Add input wvarisbles to the controller
Controller.AddcChject (IN_Bit_0);
Controller.AddcChject (IN_Bit_1):;
Controller. AddChject (IN Variable):
Controller.AddChject (IN _Eytelrray);

Controller.Addchject (IN_R3232_1);

/4 Add output wvarisbles to the controller
Controller.Addchject (OUT_Bit_0);
Controller.Addchject (OUT_Bit_1);
Controller. AddcChject (OUT Variable):
Controller.AddChject (OUT_Eytedrray) ;

Controller. AddChject (OUT_R3Z32_1);

/4 Add PCP objects to the controller
Controller.AddChject (PCP_R323Z 1.ControllerConnection);

Figure 3-10 Adding variables

Creating callbacks In the following program part, callbacks (event-controlled functions) are created.

/f Callbacks for the controller

/f Called onece for each bus cycle
Controller.OnUpdateProcesshata +=new UpdateProcessDataHandler (Controller OnUpdateProcessData);

/¢ Called once for each mailbox cycole
Controller.OnUpdateMailbox +=new UpdateMailboxHandler (Controller OnUpdateMailbox):

/f Called whenever an error occurs in the controller obhject
Controller.OnDiagnostic +=new DiagnosticHandler (Controller OnDiagnostic);:

/¢ Events from PCP_Z

PCP_R323Z_1.0nEnableReady += new EnableReadyHandler (PCP_R3232Z_ 1 OnEnableReady);
PCP_R323Z_1.0nFeadConfirmationReceived += new ConfirmationReceiveHandler (PCP_R3232Z_ 1 FeadConfirmationReceived);
PCP_R523Z_1.0nWriteConfirmationReceived += new ConfirmationReceiveHandler (PCP_R3232Z 1 WriteConfirmationReceived);
PCP_R323Z_1.0nDiagnostic += new DiagnosticHandler (PCP_R323Z_ 1 OnDiagnostic);

Figure 3-11 Creating callbacks

7473_en_01 PHOENIX CONTACT 3-7

HFI PROG

3.3 Events From the Controller

Notes on Events

— Only register events, which are required.
— Do not create blocking programming ("while") or integrate waiting times ("sleep").
— Always use parallel threads or timers to access "Forms", databases, etc.

Blocking an event blocks the complete "Controller” class and therefore the complete
application.

OnUpdateProcessData The "OnUpdateProcessData" event is called cyclically at the interval set for the process
data cycle time (20 ms).
In the "ProcessDataEvent" function registered in the "OnUpdateProcessData" event (see
Figure 3-11 on page 3-7), the process data is processed.

i #region *** Events From the Controller #rsssssssssssxsssxssssssss

AAF <swmarys
/47 Called once for each bus cycle
A </ swmar v
- ffF <param name="state": </ parar:
= private void Controller OnUpdateProcessDataiobject Zender)
{
ff TODO insert your process data handling (application) here

/¢ Test application for a counter
if (OUT_Variable.Value < OUT_Variable.MNaxValue)]
{
OUT_Variable.Value++;
i
else
{
OUT Variable.Value = OUT Variable.MinValue;
i

i
Figure 3-12 ProcessDataEvent

3-8 PHOENIX CONTACT 7473_en_01

Example Program in C#

OnUpdateMailbox

OnDiagnostic (Controller)

The "OnUpdateMailbox" event is called cyclically at the interval set for the mailbox update
time (50 ms).

In the "MailboxDataEvent" function registered in the "OnUpdateMailbox" event (see
Figure 3-11 on page 3-7), the PCP device is activated or deactivated.

é AAF <swmarys
/47 Called once for each wailbox cycle
A4 </ summary>
- £fF <param name="Sender "</ paramm:
= private void Controller OnUpdateMailbox{object Zender)
{
/¢ Enabhle/Disable the PCP Device
if (Controller.IBES3 Diag.S3tatusRegister.RUN)
{
if (!PCP_RS32Z32Z_1.Ready && !PCP_RE23Z_1.Error)
PCP_RS232_1.Enable():
i
else
{
if (PCP_RS232 1.Ready || PCP_RS232 1.Error)
PCP_R3232Z_ 1.Disable();
i

ff TODO insert your mailbox handling here (is called once for esach MNX cycle)
i

Figure 3-13 MailboxDataEvent

The "OnDiagnostic" event is called on a change in the diagnostic status of the "Controller"
class.

The "DiagnosticRun" function registered in the "OnDiagnostic" event (see Figure 3-11 on
page 3-7) displays the current diagnostic message in a non-blocking message box.

B A4 csummarye
/44 Called whenever an error occurs in the controller ohject
A </ swmar v
£fF <param name="Sender "</ paramm:
- ffF <param name="Diagnostic's></param:
= private void Controller OnDiagnostic(object Zender, DiagnosticlArgs DiagnosticCode)
{
/¢ Shows each error message
Util.MessageBoxShow (Sender, Diagnostic):

/4 TODO wour error handling can be inserted here

¥
Figure 3-14 DiagnosticRun

7473_en_01

PHOENIX CONTACT 3-9

HFI PROG

OnReadConfirmation
Received

OnWriteConfirmation
Received

OnDiagnostic (PCP)

The "OnReadConfirmationReceived" event is called if there is PCP data available for
processing.

The "PCP_RS232_1_ReadConfirmationReceived" function registered in the
"OnReadConfirmationReceived" event (see Figure 3-11 on page 3-7) is used to transfer
the PCP data to a data memory for further processing.

| A4 csummarye
£4F4 Called for each successfull read confirmation
A </ swmar v
£fF <param name="Sender "</ paramm:
- £FfF <param name="Data:></param:
= private void PCP_R323Z 1 ReadConfirmationReceivediobject Zender, byte[] Data)
{
/4 TODO insert wyour code here
lock (_pocpReadBuffer)
{
_pepReadBuffer = new Byte[Data.Length]:
_pepReadBuffer = Data;

¥
Figure 3-15 PCP_RS232 1 _ReadConfirmationReceived

The "OnWriteConfirmationReceived" event is called when the PCP device confirms a write
service.

The "Data" data for the "PCP_RS232_1_WriteConfirmationReceived" function registered
in the "OnWriteConfirmationReceived" event (see Figure 3-11 on page 3-7) can be used
to determine whether the write service was successful or not.

& AAF <swmarys
£4F4 Called for each successfull write confirmation
A4 </ summary>
£fF <param name="Sender "</ paramm:
- £FfF <param name="Data:></param:
= private void PCP_R323Z 1 WriteConfirmationReceivediobject Zender, byte[] Data)
{
/4 TODO insert wyour code here
lock|_popWriteBuffer)
{
_pepWriteBuffer = new Byte[Data.Llength]:
_pepWriteBuffer = Data;

¥
Figure 3-16 PCP_RS232_1_WriteConfirmationReceived

The "OnDiagnostic" event is called on a change in the PCP status of a PCP object.

The "PCP_RS232_1_OnDiagnostic" function registered in the "OnDiagnostic" event (see
Figure 3-11 on page 3-7) displays the current diagnostic message in a non-blocking
message box.

é A4 csummarye
/44 Called whenever an error occurs in the pep object
A </ swmar v
£fF <param name="Sender "</ paramm:
- ffF <param name="Diagnostic's></param:
= private void PCP_R323Z 1 OnDiagnostic(object Zender, DiagnosticlArgs Diagnostic)
{
/¢ Shows each diagnostic message
Util.MessageBoxShow (Sender, Diagnostic):

/¢ Tour diagnostic handling can be inserted here

H
Figure 3-17 PCP_RS232_1_OnDiagnostic

3-10

PHOENIX CONTACT

7473_en_01

Example Program in C#

OnEnableReady

Enable

Disable

The "OnEnableReady" event is called when a connection ("Initiate") has been established
with the PCP device.

3.4 Activating/Deactivating the Control Program
(Enable/Disable the Application)

In the following program part, a method is set for activating the control program.
firegion *** Enable / Disable the Application *#Fsssssssssssss

AAF <swmarys
/#/ This method enables the controller and the PCP devices
A </ swmar v
public woid Enable()
{
Controller.Enable();
¥

Figure 3-18 Activating the control program

In the following program part, a method is set for deactivating the control program.

| A4 csummarye
//¢ This method disables the PCP devices and the controller
- A </ swmar v
= public woid Disabhle()
{
/¢ Disable the PCP devices
PCP_R3232Z_ 1.Disable();

/4 Waiting for the disconnection from the PCP terminal
SGystem. Threading. Thread. 3leep (Controller.UpdateMailboxTime * 4);

/¢ Disables the controller
Controller.Disable(]:
¥

- flendregion

Figure 3-19 Deactivating the control program

When deactivating the control program, proceed as follows:
* First deactivate the PCP devices by calling the "Disable" method.

* Wait until the connections are aborted by the device.
Observe a duration of approximately four times the set mailbox update time
(UpdateMailboxTime * 4).

¢ Deactivate the "Controller” class.

7473_en_01

PHOENIX CONTACT 3-11

HFI PROG

3.5 Function for PCP Data Exchange
(Get the PCP Data From the Application)

The following program part implements PCP data exchange between the control program
and the program user interface.

Do not write directly from the "OnReadConfirmationReceived" event to the program user
interface (Form). Implement data exchange using a parallel thread or a parallel timer.

A timer is used in the example.

i firegion **% Get the PCP-Data from the application #++%#%w

AAF <swmmarys
/#/ Get the PCP Read Buffer
- A4 </ sunmmarys
= public EByte[] PCP_ReadData
i {
= [=(-34
{
lock (_pocpReadBuffer)
{
return _pcpReadBuffer;
i
- i
i

F_igure 3-20 PCP data exchange with the program user interface

3.6 Closing the Application Program
(IDisposable Member)

The following program part exits the control program. This ensures that all connections are
aborted and all processes are exited.

I?region **% IDisposable Membher +*%%*#

public woid Dispose()
{
Disaklel():
Controller.Dispose(]:
i

flendregion

Figure 3-21 Exiting the program

3-12

PHOENIX CONTACT

7473_en_01

Example Program in C#

3.7 Function for Data Exchange
(Update the Data on the Form)

¢ Switch to the "frm.Main.cs" class.

The following program part implements data exchange between the control program and
the program user interface.

Do not write directly from the events to the program user interface (Form). Implement data
exchange using a parallel thread or a parallel timer.

A timer is used in the example.
i firegion *** Update the Data on the Form Frrsff s i s i r s i s ar s A s v v s A a v e v v a o s

AAF <swmarys
/47 Update the form
A </ swmar v
£fF <param name="sender "</ pararm:
- £FF <param name="e":></ pararm:
= private void tmrMainFormUpdate Tick(ohject sender, Zystem.Eventirgs)
{
£f Zhow the controller state
chxReady.Checked = mylApplication.Controller.Ready;
chxError.Checked = mylApplication.Controller.Error;

i

Figure 3-22 Data exchange with the program user interface

7473_en_01

PHOENIX CONTACT 3-13

HFI PROG

3.8 Executing the Example Program

The main program points have now been considered and/or adapted. You can now
execute and test the program. Translate the program and start it. The program user
interface is opened.

* Inthe "Controller Handling" area, enter the IP address of the controller board.
» Start the "Controller" class by clicking on "Enable".

[EJnFI Demo c#

Contraller | PCP Eommunicationl

Contraller Handling

Type [FLIL 24 BK

Connection |1?2.1B.252.191

Enable D | [~ Controller Ready
™ Cortroller Ermar
Disable |

Figure 3-23 Setting the IP address and activating the "Controller" class

Figure 3-24 shows the entire user interface for the example program.

[EJHFI Demo c# . [m]

Controller | PCP Communication |

r— Controller Handling

Type [FLIL24BK

Connhection |1721E.252.181

Enable ¥ Contioller Ready

™ Contraller Error
Disable

—INTERBUS Handling and Diagnostic
Alamm Stop I INTERBUS Feady [~ INTERBUS Detect 000z Parameter Register

- W INTERBUS Active ¥ INTERBUS PP l—DDDD Parameter Fizgistes 2

¥ INTEREUS Run " INTERBUS Bus Fail

—Input Data [read only) Output D ata [readwrite]

Boolean Variables Boolean Vanables
[BitD [T Bit1 " Bitd k¥ Bit1
Integer Wariable Integer ¥ ariable

|D [hex] |EE [hex]
Butedrray Yarable Byteduray Variable

IDD,DD,DD,DD Ihex] IDD,DD,DD,FE therl wirie Values |

Figure 3-24 User interface for the example program

In the "Controller Handling" area, the "Controller Ready" checkbox indicates that the
"Controller" class has been started successfully.

The "INTERBUS Handling and Diagnostic" area shows the behavior of the bus, e.g., for
the "Alarm Stop" or "Auto Start" actions.

The "Input Data" and "Output Data" areas can be used to read the status of inputs or write
outputs.

* To write output data, activate the fields for the bit variables or enter "Integer" or
"ByteArray" variables.

e Then click on "Write Values".

3-14 PHOENIX CONTACT 7473_en_01

Example Program in C#

The second page of the user interface is where PCP communication is mapped.

PCP communication is activated/deactivated automatically by the control program (see
"MailboxDataEvent" on page 3-9).

[EJnFI Demo c#

Contraller PCP Communication |
Enable CR2 | [V PCP Ready
[~ PCP Enor
Disable CR2 |
ReadDatsCR2 | [ReadDatavaid

=10l x|

‘Wit Data CR2 [~ ‘wiiteDataDone
Clear |
Figure 3-25 User interface for the example program: "PCP Communication" tab

¢ Click on "Read Data CR2".

Data from the IB IL RS 232 terminal is read.

[EJnFI Demo c#

Contraller PCP Communication |
Enable CR2 | ¥ PCP Ready
[~ PCP Enor
Disable CR2 |

HeData CR2 ¥ ReadDatay alid
‘white Data CR2 | [~ ‘wiiteDataDone

=10l x|

ReadRequest (Ox5££E£, 0x0000)

FeadConfirmation: 0007 0200 0024 0ODOA 0000 0000 1113 0000 0000 Q000

Clear |

Figure 3-26

PCP data read

7473_en_01

PHOENIX CONTACT

3-15

HFI PROG

* Click on "Write Data CR2".
The "Baud-Rate" parameter for the IB IL RS 232 terminal is initialized at 19200.

[EJnFI Demo c# - o] x|
Contraller PCP Communication |
Enable CR2 [V PCP Ready ReadRequest (0x5EEE, Ox0000)
[~ PCP Enor ReadConfirmation: 0007 0200 0024 ODOA 0000 0000 1113 0000 0000 0040
Disable CR2 | WriteRequest (OxSE£E£E, 2, 08)
WriteConfirmation: 8082 0002 0002 0000
Read DataCR2 ¥ ReadDatay/alid

il Data CR2 v ‘wiiteDataDone

Clear |

Figure 3-27 PCP data written

* Click on "Read Data CR2". Reading the data again shows the change made by writing.
The first word contains the new setting (0008).

[EJnFI Demo c# - o] x|
Contraller PCP Communication |
Enable CR2 [V PCP Ready ReadRequest (0x5EEE, Ox0000)
[~ PCP Enor ReadConfirmation: 0007 0200 0024 ODOA 0000 0000 1113 0000 0000 0000
Disable CR2 | WriteRequest (OxSE£E£E, 2, 08)
WriteConfirmation: 8082 0002 0002 0000
) ReadRequest (Ox5££E£, 0x0000)
Fead Data CR2 ’
_ ¥ RieadD ataslid ReadConfirnation: 000&0200 0024 ODOA 0000 0000 1113 0000 0000 0000
‘wiiite Data CR2 v ‘wiiteDataDone

Clear |

Figure 3-28 PCP data read again

3-16 PHOENIX CONTACT 7473_en_01

Additional Software

4 Additional Software

Logical configuration
(LogicalConfiguration)

- Via CMD

- Via plug and play

Configuration via SVC file
(SvcFileConfiguration)

Physical configuration
(PhysicalConfiguration)

4.1 Bus Configuration

Depending on the controller board used, there are various options for configuring the bus.

Table 4-1 Bus configuration options
Controller Board Logical SVC File Physical
CMD Plug and
Play
IBS PCI SC/I-T Yes No Yes Yes
IBS PCI 104 SC-T Yes No Yes Yes
FL IBS SC/I-T Yes No Yes Yes
FL IL 24 BK-B-PAC No Yes No Yes
FL IL 24 BK-PAC No Yes No Yes
IL ETH BK DI8 DO4 2TX-PAC | No Yes No Yes
ILB ETH 24 DI16 DIO16-2TX | No No No Yes

For a logical bus configuration via CMD, the controller board must have been
parameterized at least once with CMD and the parameterization must have been saved.

In plug and play mode, the controller board reads the connected bus configuration and
stores this configuration permanently in the memory. This stored configuration is used
during startup with a logical configuration.

For parameterization with the generated SVC file (service file), the control PC writes the
firmware services contained in the SVC file to the controller board.

This option is ideal if CMD is not available on the control PC (e.g., for a series-production
machine).

For a physical bus configuration, CMD and plug and play mode are not required. The
controller activates the connected bus configuration as the valid configuration frame.
This option is primarily used for tests during the configuration phase. This means that the
control program can be restarted again immediately following a change in the bus
configuration, without having to modify the CMD configuration every time.

The user must ensure that the process data addressing corresponds to the existing bus
configuration.

7473_en_01

PHOENIX CONTACT 4-1

HFI PROG

4.2 Process Data Addressing

In order to generate a CSV file with process data addressing, the following software tools
can be used depending on the controller board used:

— HFI Device Explorer, which is installed with the HFI setup
— CMD, which must be installed separately (IBS CMD SWT G4 E, Order No. 2721442)

Table 4-2 Software tool for process data addressing depending on the controller
board
Type CMD HFI Device Explorer
IBS PCI SC/I-T Yes No
IBS PCI 104 SC-T Yes No
FL IBS SC/I-T Yes No
FL IL 24 BK-B-PAC No Yes
FL IL 24 BK-PAC No Yes
IL ETH BK DI8 DO4 2TX-PAC No Yes
ILB ETH 24 DI16 DIO16-2TX No No

For Inline Block 10 module addressing, please refer to the corresponding data sheet.

For information on further processing of data in the HFI Code Generator, please refer to
"HFI Code Generator" on page 4-8.

4.3 HFI Device Explorer

The HFI Device Explorer tool can read the connected bus configuration of a supported
controller board.

Table 4-3 Controller boards supported by the HFI Device Explorer

Type

FL IL 24 BK-B-PAC

FL IL 24 BK-PAC

IL ETH BK DI8 DO4-2TX-PAC

4-2

PHOENIX CONTACT

7473_en_01

Additional Software

Configuration data can then be entered directly in your development environment or written
to a CSV file.

* Open the HFI Device Explorer.

e Click on "Add Device" or "Edit Device" to open the "Edit Device Parameter" window.
e Enter the device name and IP address.

e Set the operating mode for the controller board.

From the three possible controller board operating modes, the HFI requires "Expert Mode".

For the controller boards listed in Table 4-3, there are various options for activating this
operating mode:

1. FLIL 24 BK-PAC and FL IL 24 BK-B-PAC bus couplers
Activate "Expert Mode" via the HFI Device Explorer.
In the program code of the HFI, deactivate "Expert Mode" ("false").

2. IL ETH BK DI8 DO4-2TX-PAC bus coupler
— Activate "Expert Mode" via the HFI Device Explorer.
Or

— Activate "Default Mode" via the HFI Device Explorer and activate "Expert Mode"
("true" = default setting) in the program code of the HFI.

The operating mode set via the HFI Device Explorer is stored permanently on the bus
coupler.

For the settings in the program code of the HFI, see "Settings for the "Controller" Class
(Constructor Declaration)" on page 3-6.

[ﬂndd New Device =

—Device Settings

Name |Test BK
IP-Address
ONE o |1 7216.252.191

—Initialize thiz mode after reading configuration
 Default Mods

' Expert Mode
 PriP Mode

()8 [\J Cancel |

Figure 4-1 HFI Device Explorer: "Add New Device / Edit Device Parameter" window

In "PnP Mode" the HFI cannot be used to access the bus coupler. Do not select this
@ operating mode.

7473_en_01 PHOENIX CONTACT 4-3

HFI PROG

* Read the bus configuration by clicking on "Read Bus Configuration".

[EJHFI Device Explorer] 4
Files Commands Help
Test BK Name | Modul No. | Input Address | Output Address | PD Length | CR (PCP) |
MODULE_1 1 - 0 16 -
MODULE_2 2 - 2 32
MODULE_3 3 0 - 16
MODULE_4 4 2 . N .
MODULE_5 5 B B 16 2
Add Device Edit Device |

— Device Control

Fiead Bus Configuration

Read Configuration State

Idle

—Export Canfiguration

Create C5Y File

<

|

Figure 4-2

HFI Device Explorer

4-4

PHOENIX CONTACT

7473_en_01

Additional Software

The information displayed for the variables can be entered in the variable declaration for
the program. Figure 4-3 shows the relationship between the data in the
HFI Device Explorer (A) and in the example program (B).

A @ @® @G ® @
Mame Modul Mo, | Input Address | Output Addresz | PD Length | CR [PCFP]
MODULE_1 1 - 1] 16 -
MODULE_2 2 2 32
MODULE_3 3 1] - 16
WMODULE_4 4 2 - kv
WMODULE_&] B B 16 2

B

firegion *** Create input wvariables

@ @ ©)) ®

puklic VarInput MODULE 3 TN
public VarInput MODULE 4 INW
pubhlic VWarInput MODULE 5 INW

new VarInput (0, PD Length.Word,16,0);
new WarInput (Z,FD_Length.DWord,32,0) ;
new WarInput(6,FD_Length.Word,16,0];

#endregion

firegion *** Create output wvariahles

pubrlic VarOutput MODOLE 1 QOUT
public WarOutput MODUOLE 2 OOT
public WarCutput MODOLE 5 OOT

neyw Varoutput (0,FPD Length.Word,16,0) ;
new Waroutput (Z2,FPD Length.DWord, 32,0 ;
new Waroutput (6, PD_Length.Word,16,0) ;

#endregion

firegion *** Create PCP wvarisbles

©, @
public PCP MODULE & = new PCP("MODULE 5", Z):
fiendregion
Figure 4-3 Variables in the HFI Device Explorer and in Visual Studio

The variables can also be used to generate a CSV file. This can then be further processed
in the HFI Code Generator.

¢ Click on "Create CSV File" to create a CSV file.

For information on further processing in the HFI Code Generator, please refer to
"HFI Code Generator" on page 4-8.

7473_en_01 PHOENIX CONTACT 4-5

HFI PROG

44 CMD

CMD (IBS CMD SWT G4 E, Order No. 2721442) can be used to read the connected bus
configuration from the supported controller boards.

Table 4-4 Controller boards supported by CMD

Type

IBS PCI SC/I-T

FL IBS SC/I-T

Configuration data (start address and process data length) can then be entered directly in
your development environment or written to a CSV file.

To create a project, refer to the documentation for CMD.

Proceed as follows:

e Start CMD.

* Select the desired controller board.
e Set the communication path.

¢ Read the bus configuration.

* For the assignment of process data, select "Auto-Address... Startup without... System
coupler startup without..." in the Process Data dialog box.

* If PCP devices are present: assign names for PCP devices.

» Set bus startup to "Startup without preprocessing".
Always select "Activate configuration frame" and "Start data transmission".

» Execute the parameterization as "Startup without preprocessing".

» Save the project under the desired name.

e Save the project to the Flash card of the PCI card.
To do this, right-click on "Parameterization Memory" to access the context menu and
select "Write".
When asked "Enable read back of the current project file?", select "No".

* Generate a SVC file (for the bus configuration).
To do this, right-click on "Parameterization Memory" to access the context menu and
select "Write ASCII File... INTERBUS Data (*.SVC)...".

* Save the SVC file.

* Generate a CSV file (for the code generator).
To do this, right-click on "Parameterization Memory" to access the context menu and
select "Write ASCII File... Project Data (*.CSV)...".
Select all options apart from "Comment".

* Save the CSV file.

The generated CSV file is required for code generation.

4-6 PHOENIX CONTACT 7473_en_01

Additional Software

The information displayed for the variables can be entered in the variable declaration for
the program. Figure 4-3 shows the relationship between the data in the
HFI Device Explorer (A) and in the example program (B).

.'. jProcess Data 0| x|

Device : |1 1 =+ - ot DDEEE g
Procemlata | Signal paths | @ @@

O. Mame Dus | 1D | Lengt |Byte | Bit | WA Asszignment |
1 H
Z O Change Device Description 1]
3 [Device Description
4 [B Interface Type ... |
5 . Consecutive Humber: |6
g |— Device Humber: |1.5 @ Presentation ... |

Group Humber:

Station Hame: |

Parameter Channel ... |

-]

Device Hame:

Manufacturer Hame:

Device Type: |
Or(IT\%uo_: Linclefined
ID code: |220 dec. Profile Humber: |0 hex.

Process Data Channel: |16 Bit Parameter Channel:
® cr:fe

Isolated disconnection: | J|

[~ Gray out device [~ Box-Presentation

B 0K | Cancel Help |

#region *** Create input wvariahles

puklic VarInput MODULE_3_IN = new WarlInput (0,PD Length.Word,16,0];
public VWarInput MODULE_4 IN new VarInput (Z2,FPD_Length.DWord,32,0);
public VarInput MODULE 5 IN new VarInput (6,FPD Length.Word,16,0);

#endregion

#region *** Create output variables

@ ® ®

public VarOutput MODULE_1 OUT = new VarCutput (0,PD_Length.Word, 16,0];
pubilic VarCQutput MODULE 2 OOT = new VarQutput (2,PD Length.DWord,32,0):;
public VarOoutput MODULE 5 OUT = new Varoutput (6,FPD Length.Word, 16,0]:

#endregion
#region ¥%% Create PCP wariakhles

public PCP MODULE 5 = new PCP("MODULE 57, 2):

#endregion

Figure 4-4 INTERBUS parameters in CMD

7473_en_01 PHOENIX CONTACT 4-7

HFI PROG

4.5 HFI Code Generator

The HFI Code Generator tool uses a CSV file and a selected template to create an
operational application with all the variables included in the CSV file.

The CSV file is generated either by the HFI Device Explorer or by CMD.
e Open the HFI Code Generator and follow the instructions.

EHFI Code Generator 10l =|

PO daevecemeteava

Thiz Wizard will guide you throught the code generation process.

Requirement: You need a C5Y file exported fram "ChAD" or the
"FL IO Explorer” and the file needs to have the option
"Parameter Chanel" set.

Please click on "MNext " to continue.

< Back | Mext > E it
Figure 4-5 HFI Code Generator

In the menu, select the checkboxes for the data that you require.
e Clock on "Read CSV File".

EHFI Code Generator 10l =|
™=
Reading the exported C5¥ File from "CMD" or the "HFI Device .r’ (s B
Explorer” I[,__"'}

Az afirst step, the CEV file has to be read. If the import process fails
{one of the checkboxes below will stay unchecked), please check the
delimiter options "CSY Settings" and ensure that the file containg the
"Parameter Channel" option.

Fiead CSY File I C5Y Seftings

Cihtest.cay
C5Y Analyzis —— 7~ Dbjects read
¥ Read - Fawlata 7
¥ Raw Data Fierabls? B
¥ Trarsfom Faw Data E+1PCP

About | < Back Mest > Exit

Figure 4-6 Read CSV file

4-8 PHOENIX CONTACT 7473_en_01

Additional Software

* Select the template (e.g., "VS2003 CS (FL IL 24 BK)").

* Enter the IP address.

* Specify whether you want to generate a complete project (Generate Project) or only
the variables (Generate Variables).
If a project already exists, you only need to generate the variables. In this case a
window opens following generation, which displays all generated variables. They can
then be copied from this window for further processing in a project.

e Confirm your entries with "Next".

EHFI Code Generator 10l =|
™=
Project or¥ariable generation. G)
\ /
b
' Generate Project WS52003 CS [ETH BE. D18 DO4)

52003 CS [FL IL 24 BK)
(.. . 52003 C5 (IBS PCI 5CI-T)
Gienerate Variables 52002 VE (ETH BK DI2 D04)
¥S2003E FL IL 24 BK)
¥S2003VE IBS PCI SCI-T)

Corttroller Connection [172.16.252191 |

About | < Back | Mest > | Exit |

Figure 4-7 Template and IP address for the FL IL 24 BK-PAC

¢ In the window that opens, select the path for the CSV file.

EHFI Code Generator 1Ol x|
™
Setthe Project Direclory. NG)
\ /
L~
Fraject Direstary: [\Dacuments and Settingshpbar] 75My |

Documentst'S2003 C3 [FLIL 24 BK)

About | < Back Mest > Exit

Figure 4-8 Select path

7473_en_01

PHOENIX CONTACT 4-9

HFI PROG

* In the window that opens, click on "Generate" and generate the source code for an
example project adapted to your controller board.

EHFI Code Generator 10l =|
™=
Generating the Source. G)
\ /
L~

Click on "Mext"to generate the zource code.

[V Launch IDE
To continue click "Mesxt".

About | < Back Mest > Exit

Figure 4-9 Select path

* Open the created application with your development system.
You can add your application program to the generated INTERBUS program part.
To create your application, refer to the documentation for the development system used.

4-10 PHOENIX CONTACT 7473_en_01

Additional Software

4.6 HFI Controls

4.6.1 Controls for the Application Program

Predefined controls provide quick and easy access to the key functions of the HFI. The
controls provide user-friendly diagnostic and test options, e.g., for the Service menu in your
application.

Just a few lines of code are required to start up or test a "Controller" class. The available
example programs illustrate clearly how the controls and the HFI can be used.

To use the controls in your application program, insert a reference to the "HFI_Visu"
component in your project.

Choose Toolbox Items 2=l

MET Framework Components |co|\.1 Components

MNarme | MNarmespace Assembly Name B
O cCrystalReportyiswsr CrystalDecisions.\Web CrystalDecisions.Web (10,2.36(

O customvalidator System.web,ULMobileContrals System.web,Mobile (2.0.0.0)

O customvalidator System.web ULWebControls Systermn.web (2.0.0.0)

O DatabaselogOnList CrystalDecisions. Reporting. WebControls CrystalDecisions.Web (10.2.36(
O DataGrid System.Windows. Farms System.Windows Forms (2.0.0
O DataGrid System.web ULWebControls Systermn.web (2.0.0.0)

:T Cr=d =i il i Cusmdmee Lidimdoss Cow e C‘unh—nIv\ Lidimdmnase Cowvpae £ FEILI

Filter: | Clear |
r—ciriController
Browse... |
Language: Invariant Language (Invariant Country)

‘ersion: 1.1.0.0 (Retail)

K I Cancel | Reset |

Figure 4-10 HFI controls

7473_en_01

PHOENIX CONTACT 4-11

HFI PROG

ctriController

ctrliBS_Diag

4.6.2

—_chlContraller]

Functions of the Controls

Read and operate the controller

Cantraller | INTEREUS I PCP Eommunicationl Process Datal

Available Objects: 1 —Properties —Cantral
Cantraller List: Mame: IFL IL 24 BE. |+ Controller Beady
FLIL 24 BE n [Contraller Ermor
Diescription: |FL BE for Demonstaration [~ ‘watchdog Dccuned
‘Watchdog D eactivated: |F3|SE Enable
Startup: IPhysicaIEonfiguration Dizable
SWE File Mame: | At Start
Connection String: I‘I 7216.252191 ‘Wwiatchdog Clear
Process Data Cycle: |2D [mz] M ailbo: |5D [mz]
Input Object Counter: |3 Start Addr.:lﬂ End At:h:lr.:l8
Output Object Counter: |3 Start Addr.:lﬂ End At:h:lr.:l8
Figure 4-11 Controls: ctriController

INTERBUS diagnostics and bus handling

Cortraller IMTERBUS | FCP Eommunicationl Process Datal

—_ctllBS_Diagl
—Bus State . - - r—Bus Control
Diagnostic Parameter Register
[USER ™ Bsa I—DDDD (hex) Fun
[FF [Basp
™ BUS ™ BESULT Diagnostic Parameter Register || Create Corfig.
™ CTRL [sv-RESULT [0000 (hes) activate Coia
F DETECT F DCRESULT Cyprent INTERBUS Cycle Time
v RUN WARNING
|2,3 [ms] Start Data Transh
W ACTVE [GUALITY o e e
¥ READY [~ sDsl Controller Revision |nfo: Alarm Stop
Firrrare: ﬂ
ersion: 1.20 Confirm PF Faults
State: |
Date: 280203 LI Confirm Diagnostic
Figure 4-12 Controls: ctrliBS_Diag

412

PHOENIX CONTACT

7473_en_01

Additional Software

ctriMessageClient Read PCP and firmware telegrams in the active application

Eontrollerl INTERBUS PCF Communicatian | Process Datal

—_chilkd gellient]
Avallable Objects: 2 —Properties
Message Client List: Marme: IIntemaI FLIL 24 BK.
Intemal FL IL 24 BE.
MODULE_S Diagnostic Active: ITTUE
Feceive Data Timeout: |2 [2]
State: ||d|9
Send D'ata Time: Estimated Receive Data Time:
27.11.2006 14:55:03 |2?.11.2DDB14:55;11
0351 8351
000z 0ons
0001 0ona
sl 0001
el
0ona
0300
Figure 4-13 Controls: ctriMessageClient
ctrlVarinput Read the properties of an input object (see Figure 4-14)
ctriVarOutput Read and write the properties of an output object
Contraller | INTEREUS | PCP Communication Fracess Data |
—_chiarlnput] —_chibarOutput]
Available Dbjects: 3 —Input Propertiess ——————————— Available Dbjects: 3 r~Output Properties —————
Object List: ariable Type: IUInt83 Obiject List: Yariable Type: IUInt83
Input 0.0 [UIntE3)) Output 0.0 [UIntE3])
Irput 2.0 [UIntG3) Variable Length: |15 Output 2.0 [UInts3) Variable Length: |15
Input 6.0 [UIntE3) Mirimrn Y alue: ID— Output 6.0 [UIntE3) Mirimrn Y alue: ID—
I awirnum Y alue: |55535 I awirnum Y alue: |55535
Base Address: IU Base Address: IU
Byte Length: |2 Byte Length: |2
Bit Offset: IU Bit Offset: IU
Data Data
Actual Value: IU [hes Actual Value: IU [hes
Actual State: IFaIse Actual State: IFaIse

Figure 4-14 Controls: ctrlVarlnput, ctrlVarOutput

When the "EditActivate" property is set, the "Actual Value:" output variable value
of the selected output object can be edited.

7473_en_01 PHOENIX CONTACT 4-13

HFI PROG

4-14 PHOENIX CONTACT 7473_en_01

Remote Debugging

5 Remote Debugging

Initial debugging can often be completed on the local development computer. However,
since some problems only occur in the test or production environment, debugging within
this environment is also required.

Microsoft provides the Remote Debugger as part of Visual Studio .Net. It can be used to
debug an application on another computer.

The information below is provided by the company Microsoft Corporation.

5.1 Remote Debug Monitor

In order to work with the Remote Debug Monitor, install the Machine Debug Manager via
the Visual Studio .Net setup. You can either install a full version of Visual Studio .Net or
select "Remote Components Setup"” in the main menu of the installation routine. Two
options are available here:
— Native Remote Debugging:
Installs components, which enable a debugger to establish a connection exclusively
for debugging native code.
— Full Remote Debugging:
Installs components, which enable a debugger to establish a connection for
debugging:

— Native code
— Managed code, which is executed in the CLR (Common Language Runtime)
— Scripts (VB script or JScript)

If SQL Server is installed on the computer, components for remote SQL debugging are
also installed.

If you want to debug C# or VB code, select the second option. This installs all the files
required for remote debugging on the system.

As soon as the components for remote debugging are installed, set the system access
rights to enable sufficient access.
— Debugging a process from another user:
You require administrator rights for the computer on which the process is running. This
is true whether you are directly accessing a user's application or working with a web
application, which accesses the aspnet_wp.exe process.
— Debugging your own process:
You must be the administrator or a member of the "Debugger Users" group.

If you are working with your own code or process, you can simply add your name to the
"Debugger Users" group on the remote system. The computer is then ready for remote
debugging.

7473_en_01

PHOENIX CONTACT 5-1

HFI PROG

5.2 Accessing the Application Using Your Own
Instance

If the remote computer is set up, then you can access the application using your own
instance of Visual Studio .NET. The application to be debugged must be on the remote
computer. If not, copy the relevant files to this computer.

The output path for the development project must correspond to the path on the remote
computer. Modify the output path for the development project if required.

The files currently in this path must be transmitted 1:1 to the remote computer. It may be
useful to enable the directory on the remote computer.

To debug an application, proceed as follows within Visual Studio .NET IDE:
¢ Open the project file for the application.
e Access the properties of the application via the "Project/Properties" menu.

* Select the "Debug" category in the "Configuration Properties” folder of the Properties
window.

* Set "Enable Remote Debugging" to "true".

* For the remote computer setting, enter the computer name or the IP address of the
remote computer.

» Ifdebugging is to be executed in mixed mode (managed and unmanaged), set "Enable
Unmanaged Debugging" to "true".

* Ensure that the output path under "Configuration Properties/Create/Outputs”
corresponds to the path on the remote computer.

* Click "OK" to save the changes.

You can now start debugging the application.

e From the "Debug" file menu, select "Start" to start the application on the remote
computer.

You can insert breakpoints in the code within Visual Studio .NET, at which the remote
program will interrupt execution. The code can then be executed in steps (or another
debugging method used) in order to isolate any possible runtime problems.

The same approach also works for other .NET programming languages such as
VB.NET.

5-2

PHOENIX CONTACT

7473_en_01

Remote Debugging

5.3 Possible Problems

The Remote Debugger is an excellent tool in Visual Studio .NET IDE, however, it can still
cause problems in practice. It may be impossible to receive administrator rights on the
remote computer. System administrators become very nervous if they are asked to give
someone administrator rights on their own computer, and are similarly reluctant when it
comes to installing new applications on the computer. This can cause a problem, above all
in a production environment.

5.4 Alternative Methods

If you cannot work with the Remote Debugger, e.g., because you do not have access rights
for the remote computer, you must choose alternative methods.

One alternative to debugging or monitoring code in a production application is to record
runtime errors in the event log or in a corresponding database. These messages can also
be sent by e-mail.

Another option is to use the "Exception Handling Application Block" and the "Logging and
Instrumentation Application Block". Both products are available from Microsoft free of
charge.

7473_en_01

PHOENIX CONTACT 5-3

HFI PROG

5-4 PHOENIX CONTACT 7473_en_01

	Please Observe the Following Notes
	User Group of This Manual
	Explanation of Symbols Used
	We Are Interested in Your Opinion
	General Terms and Conditions of Use for Technical Documentation
	Statement of Legal Authority
	Internet

	Table of Contents
	1 General
	1.1 Purpose of This Quick Start Guide
	1.2 HFI Interface for Data Access in the Field
	1.3 System Requirements
	1.4 Supported Controller Boards
	1.5 Software Requirements
	1.6 Available Example Programs in C#
	1.7 Additional Documentation

	2 Setup for the HFI
	3 Example Program in C#
	3.1 Variable Settings (Variable Declaration)
	3.2 Settings for the "Controller" Class (Constructor Declaration)
	3.3 Events From the Controller
	3.4 Activating/Deactivating the Control Program (Enable/Disable the Application)
	3.5 Function for PCP Data Exchange (Get the PCP Data From the Application)
	3.6 Closing the Application Program (IDisposable Member)
	3.7 Function for Data Exchange (Update the Data on the Form)
	3.8 Executing the Example Program

	4 Additional Software
	4.1 Bus Configuration
	4.2 Process Data Addressing
	4.3 HFI Device Explorer
	4.4 CMD
	4.5 HFI Code Generator
	4.6 HFI Controls
	4.6.1 Controls for the Application Program
	4.6.2 Functions of the Controls

	5 Remote Debugging
	5.1 Remote Debug Monitor
	5.2 Accessing the Application Using Your Own Instance
	5.3 Possible Problems
	5.4 Alternative Methods

