# IB IL AO 2/U/BP IB IL AO 2/U/BP-PAC

### Inline Terminal With Two Analog Voltage Outputs

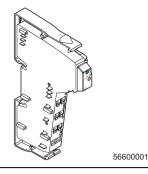
Data Sheet 566001

02/2004

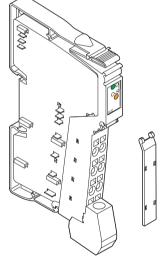
The IB IL AO 2/U/BP and IB IL AO 2/U/BP-PAC only differ in the scope of supply (see "Ordering Data" on page 33). Their function and technical data are identical. For greater clarity, the order

designation IB IL AO 2/U/BP is used throughout this document.

R


This data sheet is only valid in association with the user manual for your bus system, see "Ordering Data" on page 33.

# Function


The terminal is designed for use within an Inline station. It is used to output analog voltage signals.

### Features

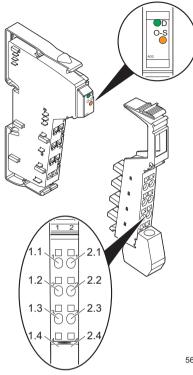
- Two analog signal outputs
- Actuator connection (using 2-wire technology and shield connection)
- Voltage ranges:
  -10 V to +10 V (13-bit resolution) and
  0 V to +10 V (12-bit resolution)
- Output value data available in two formats (IB IL and IB ST)



- Parameterizable behavior of the outputs in the event of an error
- Process data update including conversion time of the digital/analog converter < 1 ms</li>
- Very good output driver properties, therefore also suitable for long actuator cables
- Diagnostic indicators



5660B007


Figure 1 IB IL AO 2/U/BP-PAC terminal



# **Table of Contents**

| Function                                              | 1  |
|-------------------------------------------------------|----|
| Installation Instructions                             | 4  |
| Internal Circuit Diagram                              | 5  |
| Electrical Isolation                                  | 6  |
| Connection Notes                                      | 6  |
| Connection Shielded Cables Using the Shield Connector | 8  |
| Programming Data                                      | 10 |
| Process Data Words                                    | 11 |
| Output Value Representation Formats                   | 15 |
| Output Behavior                                       | 20 |
| Input Behavior                                        | 22 |
| Parameterization                                      | 24 |
| Technical Data                                        | 26 |
| Ordering Data                                         | 32 |





5660B002

Figure 2 IB IL AO 2/U/BP with appropriate connector

### Local LED Diagnostic and Status Indicators

| Des. | Color | Meaning                                 |
|------|-------|-----------------------------------------|
| D    | Green | Diagnostics                             |
| 0-S  |       | Original default state<br>parameterized |

### **Terminal Point Assignment**

| Terminal<br>Point | Signal | Assignment            |
|-------------------|--------|-----------------------|
| 1.1               | U1     | Voltage output 1      |
| 2.1               | U2     | Voltage output 2      |
| 1.2, 2.2          | -      | Not used              |
| 1.3, 2.3          | AGND   | Voltage output ground |
| 1.4, 2.4          | Shield | Shield connection     |

### Parameterized Default Upon Delivery

By default upon delivery, the parameters are set as follows:

| Data format:            | IB IL                 |
|-------------------------|-----------------------|
| Behavior of the         | Outputs hold the last |
| outputs in the event of | value (Hold)          |
| an error:               |                       |
| <b>O</b> 1 1            | 10111 1011            |

Output range: -10 V to +10 V

The following terminal parameters can be configured according to your conditions using the process data:

| Data format:            | IB ST                |
|-------------------------|----------------------|
| Behavior of the         | Outputs are reset to |
| outputs in the event of | 0 V (Reset)          |
| an error:               |                      |
| Output range:           | 0 V to +10 V         |



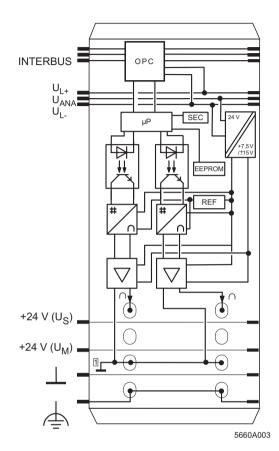
When parameterizing you must switch to parameterization mode. The connection procedure is described in "Parameterization" on page 24.

| Ø | PH<br>CO | Œ | Ņ | X |
|---|----------|---|---|---|
|   |          |   |   |   |

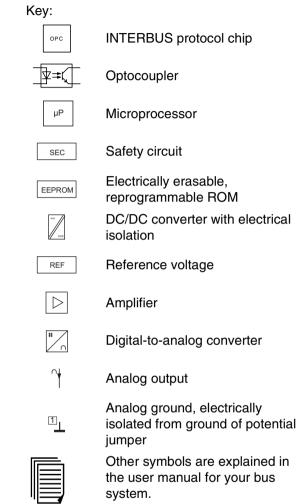
## Installation Instructions

High current flowing through the potential jumpers  $U_M$  and  $U_S$  causes the temperature of the potential jumpers and the internal temperature of the terminal to rise. Note the following instruction to keep the current flowing through the potential jumpers of the analog terminals as low as possible:



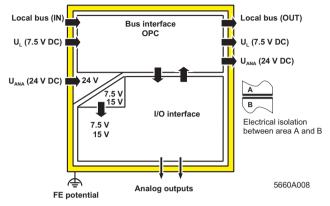

#### Create a separate main circuit for each analog terminal

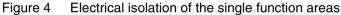

If this is not possible in your application and if you are using analog terminals in a main circuit together with other terminals, place the analog terminals behind all the other terminals at the end of the main circuit.


Note the derating curve shown on page 28












# **Electrical Isolation**





# **Connection Notes**

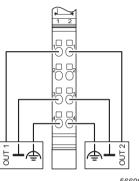
Analog actuators with a cable length of < **10 m** (32.808 ft.) can be connected with unshielded twisted-pair cables.

Connect analog actuators with a cable length of > 10 m (32.808 ft.) with shielded twistedpair cables.

Connect one end of the shielding to PE functional earth ground. Fold the outer cable sheath back and connect the shield to the terminal via the shield connector clamp (with strain relief). The clamp connects the shield directly to FE (functional earth ground) on the terminal side.



[ک


Ensure that the braided shield is 15 mm (0.291 in.) longer than the strain relief, when connecting a shielded actuator cable to the I/O connector. Connect the actuator cable as described in "Connecting Shielded Cables Using the Shield Connector" on page 8.



# **Connection Example**

R S

Use a connector with shield connection when installing the actuators. Figure 5 shows the connection schematically (without shield connector).



56600004

Figure 5 Connection of two voltage actuators with shield connection, using 2-wire technology

## **Connecting Shielded Cables Using the Shield Connector**

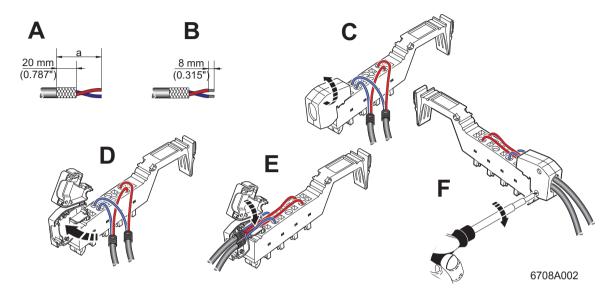



Figure 6 Connecting the shield via the shield connector

The diameter of the actuator cable is usually too large to allow the cable to be installed into the strain relief of the shield connector with sheathed and folded shield. The connection procedure for this cable therefore differs from the connection procedure described in the user manual. The comparative differences with the user manual are marked in bold text.



[~?

Connection of the cables according to Figure 6 should be carried out as follows:

### **Stripping cables**

• Strip the outer cable sheaths to the desired length (a). (A)

The desired length (a) depends on the connection position of the wires and whether the wires should have a large or small amount of space between the connection point and the shield connection.

- Shorten the braided shield to **20 mm** (0.787 in.). (A)
- Do not fold the braided shield back over the outer sheath. (B)
- Remove the protective foil.
- Strip 8 mm (0.31 in.) off the wires. (B)



Inline wiring is normally without ferrules. However, it is possible to use ferrules. If using ferrules, make sure they are properly crimped.

# Wiring the connectors (According to the user manual)

- Push a screwdriver into the slot of the appropriate terminal point, so that you can insert the wire into the featherkey opening. Phoenix Contact recommends the SZF 1 -0,6X3,5 screwdriver (Order No. 12 04 51 7).
- Insert the wire. Remove the screwdriver from the opening. The wire is now clamped.

The connector pin assignment can be found in the table on page 3.

#### **Connecting the shield**

• Open the shield connector (see user manual). (C)

- Place the shield clamp in the shield connector corresponding to the cable width (see user manual).
- Place the cables in the shield connection.
  (D)

Push the outer cable sheaths up to the shield clamp. The wires with the braided shield must be underneath the shield clamp. The braided shield must project approximately 15 mm (0.591 in.) over the shield clamp.

- Close the shield connector. (E)
- Fasten the screws for the shield connector using a screwdriver. (F)



# **Programming Data**

#### INTERBUS

| ID code                    | 5B <sub>hex</sub> (91 <sub>dec</sub> ) |
|----------------------------|----------------------------------------|
| Length code                | 02 <sub>hex</sub>                      |
| Process data channel       | 32 bits                                |
| Input address area         | 4 bytes                                |
| Output address area        | 4 bytes                                |
| Parameter channel<br>(PCP) | 0 bytes                                |
| Register length (bus)      | 4 bytes                                |

#### **Other Bus Systems**



For programming data for other bus systems, please refer to the corresponding electronic device data sheet (GSD, EDS).



# **Process Data Words**

### Assignment of the Terminal Points to the OUT Process Data Words

| (Word.bit)      | Byte             |        |                                      |       |       |    |   |     | Wo  | rd 0   |      |      |    |   |   |   |   |  |
|-----------------|------------------|--------|--------------------------------------|-------|-------|----|---|-----|-----|--------|------|------|----|---|---|---|---|--|
| view            | Bit              | 15     | 15 14 13 12 11 10 9 8 7 6 5 4 3      |       |       |    |   |     |     |        | 2    | 1    | 0  |   |   |   |   |  |
| (Byte.bit) Byte |                  | Byte 0 |                                      |       |       |    |   |     |     | Byte 1 |      |      |    |   |   |   |   |  |
| view            | Bit              | 7      | 6                                    | 5     | 4     | 3  | 2 | 1   | 0   | 7      | 6    | 5    | 4  | 3 | 2 | 1 | 0 |  |
| Assignment      | IB IL format     | SB     |                                      |       |       |    | C | han | nel | 1 ou   | tput | valu | he |   |   |   |   |  |
| Assignment      | IB ST format     | SB     | SB Channel 1 output value 0 0        |       |       |    |   |     |     |        | 0    |      |    |   |   |   |   |  |
| Terminal        | Signal           | Teri   | Terminal point 1.1: Voltage output 1 |       |       |    |   |     |     |        |      |      |    |   |   |   |   |  |
| points          | Signal reference | Teri   | Ferminal point 1.3                   |       |       |    |   |     |     |        |      |      |    |   |   |   |   |  |
|                 | Shielding (FE)   | Teri   | mina                                 | al po | int 1 | .4 |   |     |     |        |      |      |    |   |   |   |   |  |

| (Word.bit) | Byte             |      |                                      |       |       |     |      |        | Wo   | rd 1   |      |      |   |   |   |   |   |  |
|------------|------------------|------|--------------------------------------|-------|-------|-----|------|--------|------|--------|------|------|---|---|---|---|---|--|
| view       | view Bit         |      | 14                                   | 13    | 12    | 11  | 10   | 9      | 8    | 7      | 6    | 5    | 4 | 3 | 2 | 1 | 0 |  |
| (Byte.bit) | Byte             |      |                                      |       | Byt   | e 2 |      |        |      | Byte 3 |      |      |   |   |   |   |   |  |
| view       | Bit              | 7    | 7 6 5 4 3 2 1 0                      |       |       |     | 7    | 6      | 5    | 4      | 3    | 2    | 1 | 0 |   |   |   |  |
| Assignment | IB IL format     | SB   |                                      |       |       |     | C    | Chan   | nel  | 2 ou   | tput | valu | е |   |   |   |   |  |
| Assignment | IB ST format     | SB   |                                      |       |       | Ch  | anne | el 2 d | outp | ut va  | lue  |      |   |   | 0 | 0 | 0 |  |
| Terminal   | Signal           | Terr | Terminal point 2.1: Voltage output 2 |       |       |     |      |        |      |        |      |      |   |   |   |   |   |  |
| points     | Signal reference | Terr | Terminal point 2.3                   |       |       |     |      |        |      |        |      |      |   |   |   |   |   |  |
|            | Shielding (FE)   | Terr | mina                                 | al po | int 2 | .4  |      |        |      |        |      |      |   |   |   |   |   |  |

SB Sign bit

0 In "IB ST" format bits 2 through 0 are irrelevant. Set these bits to "0".

### Assignment of IN Process Data Words

| (Word.bit) | Byte |                                     |                                 |  |     |     |   |  | Wo | rd 0 |  |  |     |     |   |  |  |
|------------|------|-------------------------------------|---------------------------------|--|-----|-----|---|--|----|------|--|--|-----|-----|---|--|--|
| view       | Bit  | 15                                  | 15 14 13 12 11 10 9 8 7 6 5 4 3 |  |     |     |   |  |    |      |  |  | 2   | 1   | 0 |  |  |
| (Byte.bit) | Byte |                                     |                                 |  | Byt | e 0 |   |  |    |      |  |  | Byt | e 1 |   |  |  |
| view       | Bit  | 7                                   | 7 6 5 4 3 2 1 0 7 6 5 4 3       |  |     |     |   |  |    |      |  |  | 2   | 1   | 0 |  |  |
| Assignment |      | SBMirrored channel 1 output valueFB |                                 |  |     |     | Н |  |    |      |  |  |     |     |   |  |  |

| (Word.bit) | Byte | Word 1                              |                                 |  |  |  |   |  |  |  |  |   |   |   |   |  |
|------------|------|-------------------------------------|---------------------------------|--|--|--|---|--|--|--|--|---|---|---|---|--|
| view       | Bit  | 15                                  | 15 14 13 12 11 10 9 8 7 6 5 4 3 |  |  |  |   |  |  |  |  |   | 2 | 1 | 0 |  |
| (Byte.bit) | Byte |                                     | Byte 2 Byte 3                   |  |  |  |   |  |  |  |  |   |   |   |   |  |
| view       | Bit  | 7                                   | 6 5 4 3 2 1 0 7 6 5 4 3         |  |  |  |   |  |  |  |  | 2 | 1 | 0 |   |  |
| Assignment |      | SBMirrored channel 2 output valueFB |                                 |  |  |  | Н |  |  |  |  |   |   |   |   |  |

- SB Sign bit
- F Output data format
- B Voltage Area
- H Hold/Reset



#### **OUT Process Data Words**

The OUT process data words specify the output values in each cycle.

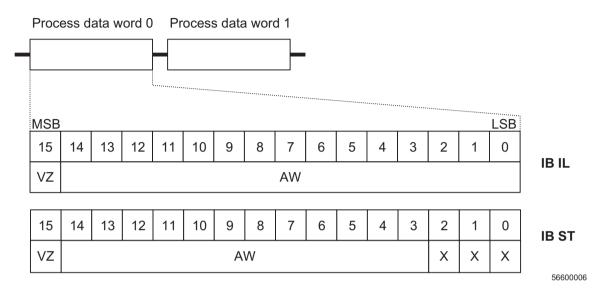
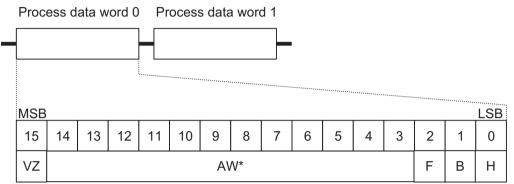



Figure 7 OUT Process data words in IB IL and IB ST formats

- SB Sign bit
- AV Output value
- X Irrelevant bit
- MSB Most significant bit
- LSB Least significant bit




Set the irrelevant bits to 0.



#### **IN Process Data Words**

Bits 15 through 3 of the OUT process data words are mirrored in the IN process data words. Bit 15 is the sign bit. Bits 2 through 0 are available as status bits. They contain information about the parameterized behavior of the terminal.



56600010

Figure 8 IN process data words

- SBSign bitOV\*Mirrored output valueFOutput data formatBVoltage Area
- H Hold/Reset
- MSB Most significant bit
- LSB Least significant bit

Bits 2 through 0 have the following meaning:

| Bit | Designation | Meaning            | Bit x = 0      | Bit x = 1    |
|-----|-------------|--------------------|----------------|--------------|
| 2   | F           | Output data format | IL             | ST           |
| 1   | В           | Voltage Area       | -10 V to +10 V | 0 V to +10 V |
| 0   | Н           | Hold/Reset         | Hold           | 0            |



## **Output Value Representation Formats**

The IB IL AO 2/U/BP terminal has format compatibility with the IB IL AI 2/SF input terminal. This means that it is possible to use these terminals in multiplexer systems (e.g., IB IL MUX).

"IB IL" is the default format on the terminal. To ensure that the terminals can be operated in previously used ST data formats, the output value representation can be switched to "IB ST" format.

#### "IB IL" Format

[·}

The output value is represented in bits 14 through 0. An additional bit (bit 15) is available as a sign bit.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|----|---|---|---|---|---|---|---|
| VZ |    |    |    |    |    |   |   | AW |   |   |   |   |   |   |   |

5660A016

Figure 9 Output value representation in "IB IL" format (15 bits + sign bit)

- SB Sign bit
- AV Output value

### Significant Output Values in "IB IL" Format

The IB IL 24 AO 2 /U/BP terminal has two analog output channels that can supply voltages from - 10 V to +10 V with 13-bit resolution.

Output range -10 V to +10 V

| Т) Т  | Data Word<br>wo's<br>plement) | -10 V Through +10 V<br>U <sub>output</sub> | Remark                         |
|-------|-------------------------------|--------------------------------------------|--------------------------------|
| hex   | dec                           | V                                          |                                |
| <7FFF | 32767                         | +10.837                                    |                                |
| >7F00 | 32512                         | +10.837                                    |                                |
| 7F00  | 32512                         | +10.837                                    |                                |
| 7530  | 30000                         | +10.0                                      |                                |
| 0008  | 8                             | +2.667 mV                                  | Smallest DAC quantization step |
| 0001  | 1                             | +333.33 μV                                 | Process data resolution        |
| 0000  | 0                             | 0                                          |                                |
| FFF8  | -8                            | -2.667 mV                                  |                                |
| 8AD0  | -30000                        | -10.0                                      |                                |
| 8100  | -32512                        | -10.837                                    |                                |
| <8100 | Processed s                   | separately:                                |                                |
| 8001  | -32767                        | +10.837                                    | (Overrange)                    |
| 8080  | -32640                        | -10.837                                    | (Underrange)                   |
| 80xx  | (Other)                       | Hold last value                            |                                |



For the 0 V to 10 V output range only the upper range is used (see Figure 7). The resolution for this range is thus limited to 12 bits.



Bits 2 through 0 are not always considered as "irrelevant bits". For use as a field multiplexer, error messages as well as overrange or underrange information must be evaluated appropriately. Overrange  $(8001_{hex})$  outputs 10.837 V, underrange  $(8080_{hex})$  0 V. With an error code  $(1000\ 0000\ 0xxx\ xxx0_{bin})$  the last valid value from the digital-to-analog converter is output.

| Т)          | Data Word<br>wo's<br>plement) | 0 V Through 10 V<br>U <sub>output</sub> | Remark                         |
|-------------|-------------------------------|-----------------------------------------|--------------------------------|
| hex         | dec                           | V                                       |                                |
| $\leq$ 7FFF | 32512                         | +10.837                                 |                                |
| > 7500      | 32512                         | +10.837                                 |                                |
| 7F00        | 32512                         | +10.837                                 |                                |
| 7530        | 30000                         | +10.0                                   |                                |
| 0008        | 8                             | +2.667 mV                               | Smallest DAC quantization step |
| 0001        | 1                             | +333.33 μV                              | Process data resolution        |
| < 0000      | 0                             | 0                                       |                                |
| < 8100      | Processed s                   | separately:                             |                                |
| 8001        | -32767                        | +10.837                                 | (Overrange)                    |
| 8080        | -32640                        | 0                                       | (Underrange)                   |
| 80xx        | (Other)                       | Hold last value                         |                                |

Output range 0 V to 10 V



The 80xx<sub>hex</sub> range is reserved exclusively for error and message codes.

#### "IB ST" Format

The output value is represented in bits 14 through 3. Bit 15 is available as sign bit. Bits 2 through 0 are irrelevant.

This format corresponds to the data format used on INTERBUS ST modules.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| VZ |    |    |    |    |    | A | W |   |   |   |   |   | Х | Х | Х |

56600011

Figure 10 Output value representation in "IB ST" format (12 bits + sign bit)

- SB Sign bit
- AV Output value
- X Irrelevant bit (Set this bit to 0.)



Bits 2 through 0 are not always considered as "irrelevant bits". The values  $7FF9_{hex}$  and  $8001_{hex}$  are recognized as overranges or underranges and interpreted as  $7FF8_{hex}$  or  $8008_{hex}$  and further processed as normal process data. In this way MUX-compatibility is ensured. The only exceptions are error codes (with ST only an open circuit). With this error code (xxxx xxxx xx1x<sub>bin</sub>) the last value is maintained.



### Significant Output Values in "IB ST" Format

Output range 0 V to 10 V

| Output Data Word<br>(Two's Complement) | 0 V Through 10<br>V<br>U <sub>output</sub> |
|----------------------------------------|--------------------------------------------|
| hex                                    | v                                          |
| >7FF8                                  | 9.9975                                     |
| 7FF8                                   | 9.9975                                     |
| 4000                                   | 5.0                                        |
| 0008                                   | 0.002441                                   |
| < 0000                                 | 0                                          |

Output range -10 V to +10 V

| Output Data Word<br>(Two's Complement) | -10 V Through<br>+10 V<br>U <sub>output</sub> |
|----------------------------------------|-----------------------------------------------|
| hex                                    | V                                             |
| >7FF8                                  | 9.9975                                        |
| 7FF8                                   | 9.9975                                        |
| 0008                                   | 0.002441                                      |
| 0000                                   | 0                                             |
| FFF8                                   | -0.002441                                     |
| 8008                                   | -9.9975                                       |
| < 8008                                 | -9.9975                                       |

# **Output Behavior**

# Output Behavior During Error-Free Operation (Normal Operation)

On power up during normal operation, the output range and the data format are read using the terminal EEPROM (non-volatile).

Volatile parameterization is also possible for these settings as well as for the behavior of the terminal in the event of an error. This parameterization can be carried out for runtime by a process data sequence.

#### Output Behavior in the Event of an Error

In the event of an error the outputs behave as set in the EEPROM (non-volatile) or as subsequently parameterized (volatile). This means that the outputs hold the last value (HOLD, default setting) or are reset to 0 (RESET, can be parameterized).

### **Output Behavior of the Voltage Output**



Take output behavior (in the event of an error) into account when configuring your system!

| Switching Operation/<br>State of the Supply<br>Voltage | Marginal<br>Condition   | INTERBUS OUT<br>Process Data Word<br>(hexadecimal) | Behavior/Status of the<br>Analog Outputs                         |
|--------------------------------------------------------|-------------------------|----------------------------------------------------|------------------------------------------------------------------|
| U <sub>ANA</sub> from 0 V to 24 V                      | $U_L = 0 V$             | XXXX                                               | 0 V                                                              |
| U <sub>ANA</sub> from 24 V to 0 V                      | U <sub>L</sub> = 7.5 V  | XXXX                                               | 0 V                                                              |
| Bus in Stop                                            | $U_{ANA} = 0 V$         | хххх                                               | 0 V                                                              |
| Bus in Stop                                            | U <sub>ANA</sub> = 24 V | хххх                                               | Hold last value                                                  |
| Bus reset<br>(e.g., remote bus cable<br>break)         |                         | хххх                                               | Hold last value<br>(default setting) or<br>0 V (parameterizable) |

UANA Analog supply voltage of the terminal

U<sub>L</sub> Supply voltage of the module electronics (communications power)

xxxx Any value in the range from 0000<sub>hex</sub> to FFFF<sub>hex</sub>



Response to a Hardware Signal of a Control System or a Computer for Different Control or Computer Systems

| Signal    | Control                     | Status After the Switching Operation |                  |  |  |  |  |
|-----------|-----------------------------|--------------------------------------|------------------|--|--|--|--|
|           | or<br>Computer System       | INTERBUS OUT Process                 | Analog Output    |  |  |  |  |
|           | Computer System             | Data Word<br>(hexadecimal)           | U <sub>out</sub> |  |  |  |  |
| NORM*     | AEG Schneider<br>Automation | 0000                                 | 0 V              |  |  |  |  |
| BASP      | Siemens S5                  | 0000                                 | 0 V              |  |  |  |  |
| CLAB      | Bosch                       | 0000                                 | 0 V              |  |  |  |  |
| SYSFAIL   | VME                         | 0000                                 | 0 V              |  |  |  |  |
| SYSFAIL   | PC                          | 0000                                 | 0 V              |  |  |  |  |
| CLEAR OUT | Moeller IPC                 | 0000                                 | 0 V              |  |  |  |  |

\* On controller boards for AEG Schneider Automation control systems it is possible to set the NORM signal so that the OUT process data word and the analog output maintain the last value.

#### Response of the Voltage Output to a Control Command From the INTERBUS Controller Board

| Command            | Status After the Switching Operation |                                                                   |  |  |  |  |  |
|--------------------|--------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
|                    | OUT Process Data Word                | Analog Output                                                     |  |  |  |  |  |
|                    | (hexadecimal)                        | U <sub>out</sub>                                                  |  |  |  |  |  |
| STOP               | хххх                                 | Hold last value                                                   |  |  |  |  |  |
| ALARM-STOP (reset) | хххх                                 | Maintain last value (default setting) or<br>0 V (parameterizable) |  |  |  |  |  |

## **Input Behavior**

When analyzing input behavior, a distinction is made between normal operation and parameterization mode. Input behavior in parameterization mode is described in "Parameterization" on page 24.

During **error-free normal operation**, the output data is mirrored in the input words as "acknowledgment" in bits 15 through 3 as soon it is transmitted to the DAC.

Bits 2 through 0 are available as status bits and are used to display and read the set behavior of the terminal.

As the IB IL AO 2/U/BP terminal evaluates bits 15 through 3 as data bits both in IB IL and IB ST format, only these 13 bits are mirrored in the input data word (see notes on error codes, overranges and underranges).

| 15 | 14 | 13  | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|-----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| VZ |    | AW* |    |    |    |   |   | F | В | Н |   |   |   |   |   |

56600014

Figure 11 Input data in "IB IL" and "IB ST" formats

| SB  | Sign bit              |                   |                |
|-----|-----------------------|-------------------|----------------|
| OV* | Mirrored output value |                   |                |
| F   | Data format           | 0: IB IL          | 1: IB ST       |
| В   | Output Range          | 0: -10 V to +10 V | 1: 0 V to 10 V |
| Н   | Hold/Reset            | 0: Hold           | 1: Reset       |

If an **error** is detected by the terminal, it is indicated by an error code in the first IN process data word. Possible error codes can be found in the following table.



**Error Codes:** 

| Input Data Word<br>(Two's Complement) | Cause                                                                                                    | Remedy                                                                        |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| hex                                   |                                                                                                          |                                                                               |  |  |
| 8010                                  | This code can only appear<br>have two causes:                                                            | in parameterization mode and can                                              |  |  |
|                                       | 1 Carry out configuration                                                                                | Continue configuration                                                        |  |  |
|                                       | In step 2 of parameterization<br>the code 8055 <sub>hex</sub> in the first<br>No errors indicated at the |                                                                               |  |  |
|                                       | 2 Configuration invalid                                                                                  | Check parameterization                                                        |  |  |
| 8020                                  | DAC voltage falls below the permissible value                                                            | Check the bus terminal voltage<br>supply;<br>Check that the potential jumpers |  |  |
|                                       | I/O error is triggered.                                                                                  | are connecting safely;<br>Replace the terminal                                |  |  |
| 8040                                  | Terminal faulty                                                                                          | Replace the terminal                                                          |  |  |



The error codes overwrite the status bits (bits 2 through 0) with "0". This means that in IB ST data format, it is also possible to clearly distinguish valid process data.

### Parameterization

| By default upon deliven<br>parameters are set as f |                       | You can configure the for<br>parameters according to<br>the process data: | •                              |
|----------------------------------------------------|-----------------------|---------------------------------------------------------------------------|--------------------------------|
| Data format:                                       | IB IL                 |                                                                           |                                |
| Behavior of the                                    | Outputs hold the last | Data format:                                                              | IB ST                          |
| outputs in the event of an error:                  | value (Hold)          | Behavior of the outputs in the event of                                   | Outputs are reset to 0 (Reset) |
| Output range:                                      | -10 V to +10 V        | an error:                                                                 |                                |
|                                                    |                       | Output range:                                                             | 0 V to +10 V                   |

In order to parameterize the terminal you must change to parameterization mode. In the first process data output word, transmit codes  $8033_{hex}$  and  $8055_{hex}$  one after the other.

In order not to change accidentally to parameterization mode, you should set bits 2 through 0 to 0 in normal operation when transmitting process data.



The parameterization is valid for both channels.

#### Parameterizing the Terminal:

| Step 1: | Transmission of code 8033 <sub>hex</sub> in the first OUT process data word.                                                                                                                                       |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | In bits 15 through 3 of the first IN process data word this code is acknowledged as a normal process data item.                                                                                                    |  |  |
|         | For every subsequent code which is not equal to 8055 <sub>hex</sub> in the first process data word, normal operation continues and the code is interpreted as a process data item.                                 |  |  |
| Step 2: | Transmission of code 8055 <sub>hex</sub> in the first OUT process data word.                                                                                                                                       |  |  |
|         |                                                                                                                                                                                                                    |  |  |
|         | Acknowledgment takes place via code 8010 <sub>hex</sub> in the first input word.                                                                                                                                   |  |  |
|         | Acknowledgment takes place via code 8010 <sub>hex</sub> in the first input word.<br>In this case, this code does not indicate an error, but shows that a configuration word<br>is eventually expected (in step 3). |  |  |



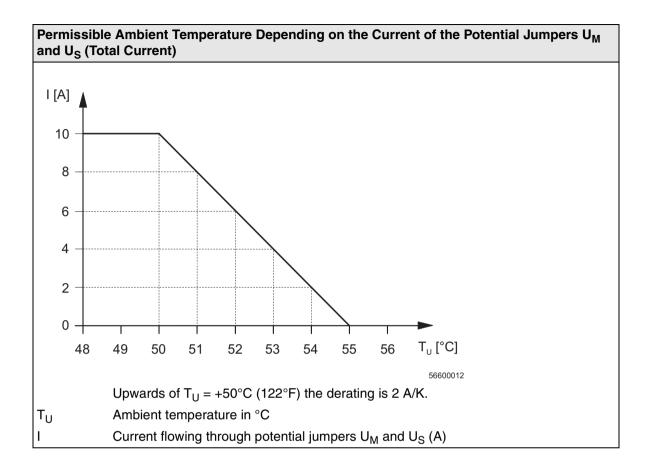
| Step 3: | Transmission of the parameterization code: 1000 0000 1000 p <sub>3</sub> p <sub>2</sub> p <sub>1</sub> 1 <sub>bin</sub> .                                                                                                                                                                                                             |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | Where $p_x$ are the terminal parameters:<br>$p_3$ : data format (0: IB IL; 1: IB ST)<br>$p_2$ : output range (0: -10 V bis +10 V; 1: 0 V bis 10 V)<br>$p_1$ : reset behavior (0: Hold; 1: Reset)                                                                                                                                      |  |  |
|         | Acceptance of the value is confirmed in bits 15 through 0 of the first input word through mirroring of the code. If an invalid configuration is displayed, code 8010 <sub>hex</sub> appears in the first input data word, which indicates the error "Invalid Configuration".                                                          |  |  |
|         | This step can be repeated as often as you like.                                                                                                                                                                                                                                                                                       |  |  |
|         | If a code that is not equal to $80xx_{hex}$ is transmitted in the first process data word, parameterization mode is quit without the parameterization taking effect.                                                                                                                                                                  |  |  |
| Step 4: | In this step you specify, whether the parameterization stored in the EEPROM is volatile (dynamic) or non-volatile (static).                                                                                                                                                                                                           |  |  |
|         | <b>Volatile parameterization:</b> After a power up this setting is no longer available.<br>Subsequent operation uses the settings stored in theEEPROM.<br>Transmission of the 8077 <sub>hex</sub> code.                                                                                                                               |  |  |
|         | <b>Non-volatile parameterization:</b> The parameterization is stored in the EEPROM.<br>After a power up this parameterization from the EEPROM is used.<br>Transmission of the 8099 <sub>hex</sub> code.                                                                                                                               |  |  |
|         | After writing $8077_{hex}$ or $8099_{hex}$ the parameterization takes effect and parameterization mode is quit. This is displayed in the first input word through the mirroring of code $8077_{hex}$ or $8099_{hex}$ . These values have a dedicated acknowledgment function. Only the next process data item is processed as normal. |  |  |



If parameterization was aborted, it is possible to switch to parameterization mode using a restart with step 1. The orange O-S LED on the terminal indicates whether the original configuration is present or if the current configuration differs from the default configuration of the terminal upon delivery. The LED is on if the default state is parameterized.



## **Technical Data**


| General Data                                                                  |                                                                                        |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Order designation/order number                                                | IB IL AO 2/U/BP      27 32 73 2        IB IL AO 2/U/BP-PAC      28 61 46 7             |  |
| Housing dimensions (width x height x depth)                                   | 12.2 mm x 120 mm x 71.5 mm<br>(0.480 in. x 4.724 in. x 2.815 in.)                      |  |
| Weight                                                                        | 48 g (without connectors)                                                              |  |
| Operating mode                                                                | Process data mode with 2 words                                                         |  |
| Type of actuator connection                                                   | 2-wire technology                                                                      |  |
| Permissible temperature (operation)                                           | -25 °C to +55 °C (+32°F to +131°F)                                                     |  |
| Permissible temperature (storage/transport)                                   | -25 °C to +85 °C (+32°F to +131°F)                                                     |  |
| Permissible humidity (operation)                                              | 75% on average, 85% occasionally                                                       |  |
| In the range from -25°C to +55°C (-<br>increased humidity (> 85%) must be     | 13°F to +131°F) appropriate measures against<br>e taken.                               |  |
| Permissible humidity (storage/transport)                                      | 75% on average, 85% occasionally                                                       |  |
| For a short period, slight condensation example, the terminal is brought into | on may appear on the outside of the housing if, for<br>o a closed room from a vehicle. |  |
| Permissible air pressure (operation)                                          | 80 kPa to 106 kPa (up to 2,000 m [9,843 ft.] above sea level)                          |  |
| Permissible air pressure (storage/transport)                                  | 70 kPa to 106 kPa (up to 3,000 m [9,843 ft.]<br>above sea level)                       |  |
| Degree of protection                                                          | IP20 according to IEC 60529                                                            |  |
|                                                                               | Class 3 according to VDE 0106, IEC 60536                                               |  |

| Interface          |              |
|--------------------|--------------|
| INTERBUS interface | Data routing |



| Power Consumption                         |                                                |  |
|-------------------------------------------|------------------------------------------------|--|
| Communications power UL                   | 7.5 V                                          |  |
| Current consumption from UL               | 33 mA, approximately (typical); 40 mA, maximum |  |
| I/O supply voltage U <sub>ANA</sub>       | 24 V DC                                        |  |
| Current consumption at UANA               |                                                |  |
| No-load operation ( $R_L > 10 M\Omega$ )  | 18 mA, typical; 28 mA, maximum                 |  |
| Full load operation ( $R_L = 2 k\Omega$ ) | 25 mA, typical; 35 mA, maximum                 |  |
| Total power consumption                   |                                                |  |
| No-load operation ( $R_L > 10 M\Omega$ )  | 0.68 W, typical                                |  |
| Full load operation ( $R_L = 2 k\Omega$ ) | 0.85 W, typical                                |  |

| Supply of the Module Electronics and I/O Through the Bus Terminal/Power Terminal |  |  |  |
|----------------------------------------------------------------------------------|--|--|--|
| Connection method Potential routing                                              |  |  |  |





| Analog Outputs                                                                         |                                                                              |                                                                          |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Number                                                                                 |                                                                              | 2                                                                        |  |
| Signal connection method                                                               |                                                                              | 2-wire technology, single-ended                                          |  |
| Signals/resolution in the process data word (qual                                      |                                                                              | ntization)                                                               |  |
| Voltage                                                                                | -10 V to +10 V                                                               | 333.33 μV/LSB                                                            |  |
| Voltage                                                                                | 0 V to +10 V                                                                 | 333.33 μV/LSB                                                            |  |
| Representatio                                                                          | on of output value                                                           |                                                                          |  |
|                                                                                        | -10 V to +10 V                                                               | 16-bit two's complement                                                  |  |
|                                                                                        | 0 V to +10 V                                                                 | 16-bit two's complement                                                  |  |
|                                                                                        | or the representation of the output v<br>otes in "Output Value Representatio | alue in the different formats please refer to the n Formats" on page 15. |  |
| Smallest DAC                                                                           | C quantization step                                                          |                                                                          |  |
| -10 V to +10                                                                           | V                                                                            | 2.667 to 13 mV                                                           |  |
| 0 V to +10 V                                                                           |                                                                              | 2.667 to 12 mV                                                           |  |
| Basic error lin                                                                        | nit                                                                          | ±0.02%, typical, of the output range final value                         |  |
| Output load                                                                            |                                                                              | 2 k $\Omega$ , minimum                                                   |  |
| Process data update time including the conversion time of the digital/analog converter |                                                                              | 1 INTERBUS cycle<br>(dependent on the bus configuration); < 1 ms         |  |
| Signal rise tim                                                                        | ne (slew rate)                                                               |                                                                          |  |
| 10% to 90% of the final value                                                          |                                                                              | 15 μs, typical                                                           |  |
| 0% to > 99% of the final value                                                         |                                                                              | 31 μs, typical                                                           |  |
| Signal rise tim<br>(-9.0 V to +9.0                                                     |                                                                              |                                                                          |  |
| No-load operation                                                                      |                                                                              | 0.35 V/µs, typical                                                       |  |
| With ohmic load ( $R_L = 2 k\Omega$ )                                                  |                                                                              | 0.24 V/µs, typical                                                       |  |
| With ohmic/capacitative load<br>$R_L = 2 k\Omega / C_L = 10 nF$                        |                                                                              | 0.24 V/μs, typical                                                       |  |
| With ohmic/capacitative load<br>$R_L = 2 k\Omega / C_L = 220 nF$                       |                                                                              | 0.09 V/μs, typical                                                       |  |

| Analog Outputs (Continued)                                                                       |                                                                                            |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Transient protection of analog outputs                                                           | Yes                                                                                        |  |
| Maximum cable length for the LiYCY (TP)<br>cable type,<br>(shielded twisted power station cable) | 500 m                                                                                      |  |
| Electrical features of LiYCY (TP)                                                                | N x 2 x 0.5<br>(N= number of wire pairs,<br>conductor cross-section $\ge 0.5 \text{ mm}^2$ |  |
| Inductivity<br>Effective capacitance                                                             | 0.67 mH/km, typically<br>120 mH/km, typically                                              |  |

| Tolerance and Temperature Response (Absolute Tolerance Values)<br>(The tolerance values refer to the output range final value of 10 V.) |          |          |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|                                                                                                                                         | Typical  | Maximum  |
| Tolerance at 23°C (73.4°F)                                                                                                              |          |          |
| Total offset voltage                                                                                                                    | ±0.5 mV  | ±4.0 mV  |
| Gain error                                                                                                                              | ±2.5 mV  | ±6.0 mV  |
| Differential non-linearity                                                                                                              | ±1.3 mV  | ±3.9 mV  |
| Total tolerance at 23°C (73.4°F)                                                                                                        | ±4.3 mV  | ±13.9 mV |
| Temperature response at -25°C to +55°C (-13°F to 131°F)                                                                                 |          |          |
| Offset voltage drift T <sub>KVO</sub>                                                                                                   | ±2.1 mV  | ±5.0 mV  |
| Gain drift T <sub>KG</sub>                                                                                                              | ±9.2 mV  | ±20.0 mV |
| Total voltage drift T <sub>Ktot</sub> = T <sub>KVO</sub> + T <sub>KG</sub>                                                              | ±11.3 mV | ±25.0 mV |
| Total tolerance of the voltage output<br>(-25°C to 55°C [-13°F to 131°F])<br>Offset error + gain error + linearity error + drift error  | ±15.6 mV | ±38.9 mV |



|                                                                                                                                        | Typical  | Maximum  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Tolerance at 23°C (73.4°F)                                                                                                             | ·        |          |
| Total offset voltage                                                                                                                   | ±0.005 % | ±0.027 % |
| Gain error                                                                                                                             | ±0.025 % | ±0.060 % |
| Differential non-linearity                                                                                                             | ±0.013 % | ±0.027 % |
| Total tolerance at 23°C (73.4°F)                                                                                                       | ±0.09 %  | ±0.14 %  |
| Temperature response at -25°C to +55°C (-13°F to 131°F)                                                                                |          |          |
| Offset voltage drift T <sub>KVO</sub>                                                                                                  | 4 ppm/K  | 10 ppm/K |
| Gain drift T <sub>KG</sub>                                                                                                             | 18 ppm/K | 40 ppm/K |
| Total voltage drift T <sub>Ktot</sub> = T <sub>KVO</sub> + T <sub>KG</sub>                                                             | 23 ppm/K | 50 ppm/K |
| Total tolerance of the voltage output<br>(-25°C to 55°C [-13°F to 131°F])<br>Offset error + gain error + linearity error + drift error | ±0.16 %  | ±0.39 %  |

| Additional Tolerances Influenced by Electromagnetic Fields                                            |                                                                       |           |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|--|
| Type of Electromagnetic<br>Interference                                                               | Typical Deviation of the Output Range Final Value<br>(Voltage Output) |           |  |
|                                                                                                       | Relative                                                              | Absolute  |  |
| Electromagnetic fields;<br>Field strength 10 V/m<br>according to EN 61000-4-3 /<br>IEC 61000-4-3      | < ±0.2 %                                                              | < ±20 mV  |  |
| Conducted interference<br>Class 3 (test voltage 10 V)<br>according to EN 61000-4-6 /<br>IEC 61000-4-6 | < ±2.8 %                                                              | < ±280 mV |  |

R

The values are valid for shielded and unshielded twisted actuator cables.

### Safety Equipment

Transient protection of analog outputs

Yes



#### **Electrical Isolation/Isolation of the Voltage Areas**



The electrical isolation of the logic level from the I/O area is ensured through the DC/DC converter.

#### **Common Potentials**

24 V I/O voltage, 24 V segment voltage, and GND have the same potential. FE is a separate potential range.

# Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O Terminal

| - Test Distance                                                                | - Test Voltage         |
|--------------------------------------------------------------------------------|------------------------|
| 7.5 V supply (bus logic)/24 V supply U <sub>ANA</sub> /I/O                     | 500 V AC, 50 Hz, 1 min |
| 7.5 V supply (bus logic)/24 V supply U <sub>ANA</sub> /functional earth ground | 500 V AC, 50 Hz, 1 min |
| 24 V supply (I/O)/functional earth ground                                      | 500 V AC, 50 Hz, 1 min |

| Error Messages to the Higher-Level Control or Computer System |                                            |  |  |
|---------------------------------------------------------------|--------------------------------------------|--|--|
| Failure of or falling below communications power              | Yes, I/O error message to the bus terminal |  |  |
| UL                                                            |                                            |  |  |



# **Ordering Data**

| Description                                                                                                  | Order Designation       | Order No.  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------|------------|--|
| Terminal with two analog voltage outputs, including connectors and labeling field                            | IB IL AO 2/U/BP-PAC     | 28 61 46 7 |  |
| Terminal with two analog voltage outputs                                                                     | IB IL AO 2/U/BP         | 27 32 73 2 |  |
| The shield connector listed below is needed for the complete fitting of the IB IL AO 2/U/BP connector.       |                         |            |  |
| Connector with six spring-cage connections<br>and shield connection<br>(green, w/o color print)<br>pack of 5 | IB IL SCN-6 SHIELD-TWIN | 27 40 24 5 |  |
| Configuring and Installing the INTERBUS Inline Product Range                                                 | IB IL SYS PRO UM E      | 27 43 04 8 |  |

Make sure you always use the latest documentation. It can be downloaded at <u>www.phoenixcontact.com</u>.

Phoenix Contact GmbH & Co. KG Flachsmarktstr. 8 32825 Blomberg Germany

T

+ 49 - (0) 52 35 - 3-00

, + 49 - (0) 52 35 - 3-4 12 00

www.phoenixcontact.com

Worldwide Locations: www.phoenixcontact.com/salesnetwork

