
Designation:

Order No.:

Hardware and Firmware Manual for the
Ethernet/Inline Bus Coupler
FL IL 24 BK-B-PAC

FL IL 24 BK-B UM E

26 98 76 6

User Manual

FL IL 24 BK-B UM E

654403

Designation:

Revision:

Order No.:

Factory Line

This user manual is valid for:

© Phoenix Contact 07/2004

654403

Hardware and Firmware Manual for the Factory Line

Ethernet Bus Coupler FL IL 24 BK-B-PAC

FL IL 24 BK-B UM E

03

26 98 76 6

FL IL 24 BK-B-PAC with Firmware Version 1.10

User Manual

FL IL 24 BK-B-PAC

654403

Please Observe the Following Notes:

In order to ensure the safe use of your device, we recommend that you
read this manual carefully. The following notes provide information on how
to use this manual.

Requirements of the User Group

The use of products described in this manual is oriented exclusively to
qualified electricians or persons instructed by them, who are familiar with
applicable national standards. Phoenix Contact assumes no liability for
erroneous handling or damage to products from Phoenix Contact or
external products resulting from disregard of information contained in this
manual.

Explanation of Symbols Used

The attention symbol refers to an operating procedure which, if not
carefully followed, could result in damage to hardware and software or
personal injury.

The note symbol informs you of conditions that must strictly be observed to
achieve error-free operation. It also gives you tips and advice on the
efficient use of hardware and on software optimization to save you extra
work.

The text symbol refers to detailed sources of information (manuals, data
sheets, literature, etc.) on the subject matter, product, etc. This text also
provides helpful information for the orientation in the manual.

We Are Interested in Your Opinion

We are constantly attempting to improve the quality of our manuals.

Should you have any suggestions or recommendations for improvement of
the contents and layout of our manuals, we would appreciate it if you would
send us your comments. Please use the universal fax form at the end of
the manual for this.

654403

Statement of Legal Authority

This manual, including all illustrations contained herein, is copyright
protected. Use of this manual by any third party deviating from the
copyright provision is forbidden. Reproduction, translation, or electronic
and photographic archiving or alteration requires the express written
consent of Phoenix Contact. Violators are liable for damages.
Phoenix Contact reserves the right to make any technical changes that
serve the purpose of technical progress.
Phoenix Contact reserves all rights in the case of patent award or listing of
a registered design. Third-party products are always named without
reference to patent rights. The existence of such rights shall not be
excluded.

Warning
The FL IL 24 BK-B-PAC module is designed exclusively for SELV
operation according to IEC 950/EN 60950/VDE 0805.

Shielding
The shielding ground of the connected twisted pair cables is electrically
connected with the socket. When connecting network segments, avoid
ground loops, potential transfers, and voltage equalization currents
using the braided shield.

ESD
The modules are fitted with electrostatically sensitive components.
Exposure to electric fields or charge imbalance may damage or
adversely affect the life of the modules.
The following safety equipment must be used when using
electrostatically sensitive modules:
Create an electrical equipotential bonding between yourself and your
surroundings, e. g., using an ESD wristband, which is connected to the
grounded DIN rail to which the module will be connected.

Housing
Only authorized Phoenix Contact personnel are permitted to open the
housing.

FL IL 24 BK-B-PAC

654403

About This Manual

Purpose of this
manual

This manual illustrates how to configure an Ethernet/Inline station to meet
application requirements.

Who should use this
manual

Use this manual if you are responsible for configuring and installing an
Ethernet/Inline station. This manual is written based on the assumption that
the reader possesses basic knowledge about Inline systems.

Related
documentation

For specific information on the individual Inline terminals see the
corresponding terminal-specific data sheets.

Latest
documentation on
the Internet

Make sure you always use the latest documentation. Changes in or
additional information on present documentation can be found on the
Internet at http://www.phoenixcontact.com or http://www.factoryline.de.
The Phoenix Contact homepage is updated daily. You can also contact us
by sending an e-mail to factoryline-service@phoenixcontact.com.

654403

Orientation in this
manual

For easy orientation when looking for specific information the manual offers
the following help:

– The manual starts with the main table of contents that gives you an
overview of all the topics.

– Each manual section starts with an overview of the section topics.

– On the left side of the pages within the sections you will see the topics
that are covered in the section.

– In the appendix you will find a list of figures and a list of tables.

This user manual
includes

In the first section you are introduced to Inline basics and general
information that applies to all terminals or terminal groups of the Inline
range. Topics are, for example:

– Overview of the Inline Product Groups

– Terminal Structure

– Terminal installation and wiring

– Common technical data

Validity of
documentation

Phoenix Contact reserves the right to make any technical extensions and
changes to the system that serve the purpose of technical progress. Until
a new manual revision is published, any updates or changes will be
documented on the Internet at http://www.phoenixcontact.com or
http://www.factoryline.de .

http://phoenixcontact.com
http://factoryline.de

FL IL 24 BK-B-PAC

654403

654403 i

Table of Contents

1 FL IL 24 BK-B-PAC...1-3

1.1 General Functions...1-3

1.1.1 Product Description ...1-3

1.2 Structure of the FL IL 24 BK-B-PAC
Bus Coupler ..1-5

1.3 Local Status and Diagnostic Indicators1-6

1.4 Connecting the Supply Voltage...1-7

1.5 Connector Assignment..1-8

1.6 Supported Inline Modules ...1-9

1.7 Basic Structure of Low-Level
Signal Modules..1-14

1.7.1 Electronics Base ...1-15

1.7.2 Connectors ..1-16

1.8 Function Identification and Labeling..1-20

1.9 Dimensions of Low-Level Signal Modules1-24

1.10 Electrical Potential and Data Routing..1-27

1.11 Circuits Within an Inline Station and Provision of the
Supply Voltages ..1-29

1.11.1 Supply of the Ethernet Bus Coupler1-30

1.11.2 Logic Circuit UL .. 1-30

1.11.3 Analog Circuit UANA ... 1-31

1.11.4 Main Circuit UM .. 1-32

1.11.5 Segment Circuit ..1-33

1.12 Voltage Concept..1-35

1.13 Diagnostic and Status Indicators...1-42

1.13.1 LEDs on the Ethernet Bus Coupler1-42

1.13.2 Supply Terminal Indicators ...1-44

1.13.3 Input/Output Module Indicators1-46

1.13.4 Indicators on Other Inline Modules1-47

FL IL 24 BK-B UM E

ii 654403

1.14 Mounting/Removing Modules and Connecting Cables1-48

1.14.1 Installation Instructions ...1-48

1.14.2 Mounting and Removing Inline Modules1-48

1.14.3 Mounting ...1-49

1.14.4 Removal ..1-51

1.14.5 Replacing a Fuse ..1-53

1.15 Grounding an Inline-Station ..1-55

1.15.1 Shielding an Inline Station ..1-57

1.15.2 Shielding Analog Sensors and Actuators1-57

1.16 Connecting Cables..1-61

1.16.1 Connecting Unshielded Cables1-61

1.16.2 Connecting Shielded Cables
Using the Shield Connector 1-63

1.17 Connecting the Power Supply...1-66

1.17.1 Power Terminal Supply ...1-67

1.17.2 Provision of the Segment Voltage Supply at
Power Terminals ...1-68

1.17.3 Requirements Regarding the Voltage Supplies1-68

1.18 Connecting Sensors and Actuators...1-68

1.18.1 Connection Methods for Sensors and Actuators1-68

1.18.2 Examples of Connections for Digital I/O Modules1-70

2 Startup/Operation ...2-3

2.1 Firmware Startup...2-3

2.1.1 Sending BootP Requests ..2-3

2.2 Assigning an IP Address Using the Factory Manager.................2-3

2.2.1 BootP ..2-4

2.3 Manual Addition of Devices Using The Factory Manager2-4

2.4 Selecting IP Addresses ...2-5

2.4.1 Possible Address Combinations 2-6

2.4.2 Subnet Masks ...2-7

2.4.3 Structure of the Subnet Mask2-8

2.5 Web-Based Management ...2-9

Table of Contents

654403 iii

2.5.1 Calling Web-Based Management (WBM)2-9

2.5.2 Structure of the Web Pages ..2-10

2.5.3 Layout of the Web Pages ..2-11

2.5.4 Password Protection ...2-11

2.5.5 Process Data Access via XML2-12

2.6 Factory Line I/O Configurator..2-17

2.6.1 Factory Line I/O Browser ..2-17

2.6.2 OPC Configurator ...2-18

3 Driver Software ...3-3

3.1 Documentation ..3-3

3.1.1 Hardware and Software User Manual3-3

3.2 The Software Structure ...3-3

3.2.1 Ethernet / Inline Bus Terminal Firmware3-4

3.2.2 Driver Software ...3-4

3.3 Support and Driver Update ...3-5

3.4 Transfer of I/O Data ..3-7

3.4.1 Position of the Process Data (Example)3-8

3.5 Startup Behavior of the Bus Terminal ...3-9

3.5.1 Plug & Play Mode ...3-9

3.5.2 Expert Mode ..3-10

3.5.3 Possible Combination of Modes3-10

3.5.4 Startup Diagrams of the Bus Coupler3-11

3.5.5 Changing and Starting a Configuration in P&P Mode .3-13

3.6 Changing a Reference Configuration Using the Software3-14

3.6.1 Effects of Expert Mode ..3-14

3.6.2 Changing a Reference Configuration3-14

3.7 Description of the Device Driver Interface (DDI)3-16

3.7.1 Introduction ...3-16

3.7.2 Overview ...3-17

3.7.3 Working Method of the Device Driver Interface3-17

3.7.4 Description of the Functions of the
Device Driver Interface ...3-20

FL IL 24 BK-B UM E

iv 654403

3.8 Monitoring Function...3-35

3.8.1 Process Data Monitoring /
Process Data Watchdog ...3-37

3.8.2 Connection Monitoring (Host Checking)3-39

3.8.3 Data Interface (DTI) Monitoring3-42

3.8.4 I/O Fault Response Mode ...3-46

3.8.5 Handling the NetFail Signal /
Testing With ETH_SetNetFail3-48

3.9 IN Process Data Monitoring ..3-56

3.10 Notification Mode ..3-60

3.11 Programming Support Macros ..3-63

3.11.1 Introduction ...3-63

3.12 Description of the Macros ...3-65

3.12.1 Macros for Converting the Data Block of a Command 3-66

3.12.2 Macros for Converting the Data Block of a Message ..3-69

3.12.3 Macros for Converting Input Data3-72

3.12.4 Macros for Converting Output Data3-73

3.13 Diagnostic Options of the Driver Software3-76

3.13.1 Introduction ...3-76

3.14 Positive Messages ..3-77

3.15 Error Messages...3-78

3.15.1 General Error Messages ...3-78

3.15.2 Error Messages When Opening a Data Channel3-80

3.15.3 Error Messages When Transmitting
Messages/Commands ..3-81

3.15.4 Error Messages When Transmitting Process Data3-83

3.16 Example Program ...3-86

3.16.1 Demo Structure Startup ..3-86

3.16.2 Example Program Source Code3-88

4 Firmware Services ..4-3

4.1 Overview ...4-3

4.1.1 Services That can be Used in

Table of Contents

654403 v

Every Operating Mode ..4-3

4.1.2 Services That are Only Available in Expert Mode4-4

4.2 Notes on Service Descriptions ..4-4

4.2.1 Service "Name of the Service"4-5

4.3 Services for Parameterizing the Controller Board.......................4-8

4.3.1 "Control_Parameterization" Service4-8

4.3.2 "Set_Value" Service ..4-10

4.3.3 "Read_Value" Service ...4-12

4.3.4 "Initiate_Load_Configuration" Service4-14

4.3.5 "Load_Configuration" Service4-16

4.3.6 "Terminate_Load_Configuration" Service4-20

4.3.7 "Read_Configuration" Service4-22

4.3.8 "Complete_Read_Configuration" Service4-29

4.3.9 "Delete_Configuration" Service4-32

4.3.10 "Create_Configuration" Service4-33

4.3.11 "Activate_Configuration" Service4-36

4.3.12 "Control_Device_Function" Service4-38

4.3.13 "Reset_Controller_Board" Service4-40

4.4 Services for Direct INTERBUS Access4-42

4.4.1 "Start_Data_Transfer" Service4-42

4.4.2 "Alarm_Stop" Service ..4-44

4.5 Diagnostic Services...4-45

4.5.1 "Get_Error_Info" Service ...4-45

4.5.2 "Get_Version_Info" Service ..4-52

4.6 Error Messages for Firmware Services:....................................4-56

4.6.1 Overview ...4-56

4.6.2 Positive Messages ..4-57

4.6.3 Error Messages ...4-57

5 Modbus/TCP Protocol...5-3

5.1 Modbus Protocol ...5-4

5.1.1 Modbus Connections ..5-4

5.1.2 Modbus Interface ..5-4

FL IL 24 BK-B UM E

vi 654403

5.1.3 Modubus Conformity Classes5-4

5.1.4 Modbus Message Format ...5-5

5.1.5 Modbus Byte Sequence ..5-5

5.1.6 Modbus Bit Sequence ...5-6

5.2 Modbus Function Codes ...5-6

5.3 Modbus Table ...5-6

5.3.1 Example: Position of the Input / Output Data5-8

5.4 Executable Functions..5-9

5.5 Supported Function Codes ...5-10

5.5.1 Read Multiple Registers ..5-10

5.5.2 Write Multiple Registers ..5-12

5.5.3 Read Coils ..5-13

5.5.4 Read Input Discretes ..5-14

5.5.5 Read Input Registers ..5-15

5.5.6 Write Coil ..5-16

5.5.7 Write Single Register ..5-17

5.5.8 Read Exception Status ...5-19

5.5.9 Data Format of the Exception Status5-19

5.5.10 Exception Responses ...5-20

5.5.11 Write Multiple Coils ...5-21

5.5.12 Read/Write Register ..5-22

5.6 Reserved Registers for
Command and Status Words ..5-24

5.6.1 Command Word ..5-24

5.6.2 Status Word ..5-25

5.6.3 Diagnostics Using the Analog Input Table5-26

5.6.4 Error Table ..5-26

5.7 Monitoring ...5-28

5.8 Modbus Monitoring..5-29

5.9 I/O Fault Response Mode ...5-30

5.9.1 The Power Up Table ...5-31

5.9.2 The Connection Monitoring Table5-33

Table of Contents

654403 vii

6 Technical Data..6-3

6.1 Ordering Data..6-11

FL IL 24 BK-B UM E

viii 654403

Section 1

654403 1-1

This section informs you about

– the basic structure of low-level signal modules

– the arrangement of the diagnostic and status indicators

– the potential and data routing

FL IL 24 BK-B-PAC...1-3

1.1 General Functions...1-3

1.1.1 Product Description..1-3

1.2 Structure of the FL IL 24 BK-B-PAC
Bus Coupler ..1-5

1.3 Local Status and Diagnostic Indicators1-6

1.4 Connecting the Supply Voltage...1-7

1.5 Connector Assignment..1-8

1.6 Supported Inline Modules ...1-9

1.7 Basic Structure of Low-Level
Signal Modules..1-14

1.7.1 Electronics Base ..1-15

1.7.2 Connectors...1-16

1.8 Function Identification and Labeling..1-20

1.9 Dimensions of Low-Level Signal Modules1-24

1.10 Electrical Potential and Data Routing..1-27

1.11 Circuits Within an Inline Station and Provision
of the Supply Voltages ..1-29

1.11.1 Supply of the Ethernet Bus Coupler.............................1-30

1.11.2 Logic Circuit UL... 1-30

1.11.3 Analog Circuit UANA.. 1-31

1.11.4 Main Circuit UM... 1-32

1.11.5 Segment Circuit ...1-33

1.12 Voltage Concept..1-35

FL IL 24 BK-B-PAC UM E

1-2 654403

1.13 Diagnostic and Status Indicators...1-42

1.13.1 LEDs on the Ethernet Bus Coupler..............................1-42

1.13.2 Supply Terminal Indicators ..1-44

1.13.3 Input/Output Module Indicators....................................1-46

1.13.4 Indicators on Other Inline Modules1-47

1.14 Mounting/Removing Modules and Connecting Cables1-48

1.14.1 Installation Instructions ..1-48

1.14.2 Mounting and Removing Inline Modules......................1-48

1.14.3 Mounting ..1-49

1.14.4 Removal...1-51

1.14.5 Replacing a Fuse...1-53

1.15 Grounding an Inline-Station ..1-55

1.15.1 Shielding an Inline Station ...1-57

1.15.2 Shielding Analog Sensors and Actuators.....................1-57

1.16 Connecting Cables..1-61

1.16.1 Connecting Unshielded Cables....................................1-61

1.16.2 Connecting Shielded Cables
Using the Shield Connector ..1-63

1.17 Connecting the Power Supply...1-66

1.17.1 Power Terminal Supply..1-67

1.17.2 Provision of the Segment Voltage Supply
at Power Terminals ..1-68

1.17.3 Requirements Regarding the Voltage Supplies1-68

1.18 Connecting Sensors and Actuators...1-68

1.18.1 Connection Methods for Sensors and Actuators1-68

1.18.2 Examples of Connections for Digital I/O Modules........1-70

FL IL 24 BK-B-PAC

654403 1-3

1 FL IL 24 BK-B-PAC

1.1 General Functions

1.1.1 Product Description

Ethernet / Inline Bus Coupler

Features

– Ethernet coupler for the Inline I/O system

– Ethernet TCP/IP
- 10/100 Base-T(X)

– Up to 63 other Inline modules can be connected
(process data channel)

– Flexible installation system for Ethernet

– IP parameter setting via BootP

– DDI software interface (Device Driver Interface) and Modbus/TCP

– Driver software for Sun Solaris/ Windows NT/2000

– Software interface kit for other Unix systems

Applications

– Connection of sensors/actuators via Ethernet.

Exchange of Inline process data via Ethernet using a Unix workstation or a
Windows NT/2000 computer.

Software by Phoenix Contact Required for Process Data Operation

Table 1-1 Software for Process Data Operation

Operation Software

DDI (Read and Write) DDI driver

Modbus/TCP (Read and Write) ---

OPC (Read and Write) OPC Server ≥ 2.01
FL IO Browser
FL IO Configurator

XML (Read only) ---

FL IL 24 BK-B UM E

1-4 654403

Front View of the FL IL 24 BK-B-PAC

Figure 1-1 Front view of the FL IL 24 BK-B-PAC

� �

�

�

�

�

�

�

�

�

� �

� �

� �

	 �
 � �
 � �
 � � � � � � �
� � � � � � � � �
 � � � � � � �

� � �

� � �

� � �

	 � � �

� �

� �

� � ! � � �

� � " # � � � �

� � � � � � � " � " � � � � � � �

FL IL 24 BK-B-PAC

654403 1-5

1.2 Structure of the FL IL 24 BK-B-PAC
Bus Coupler

Figure 1-2 Structure of the FL IL 24 BK-B-PAC Bus Coupler

The bus coupler has the following components:

1 End plate to protect the last Inline module

2 Inline diagnostic indicators

3 24 V DC supply and functional earth ground connector

4 MAC address in clear text and as a barcode

5 Ethernet interface (twisted pair cables in RJ45 format)

6 Two FE contacts for grounding the bus coupler using a DIN rail
(on the back of the module)

7 Ethernet LED status and diagnostic indicators

�

�

�

�

"
�

�

FL IL 24 BK-B UM E

1-6 654403

1.3 Local Status and Diagnostic Indicators

Table 1-2 Local Status and Diagnostic Indicators

Reset

The bus coupler can be reset by switching the supply voltage off and on
again.

Des. Color Status Meaning

Electronics module

UL Green ON 24 V supply, 7 V communications power/interface supply present

OFF 24 V supply, 7 V communications power/interface supply not present

UM Green ON 24 V main circuit supply present

OFF 24 V main circuit supply not present

US Green ON 24 V segment supply is present

OFF 24 V segment supply is not present

Ethernet Port

PP Green ON Plug & play mode is activated

OFF Plug & play mode is not activated

FAIL Red ON The firmware has detected an error

OFF The firmware has not detected any error

100 Green ON Operation at 100 Mbps (if LNK LED active)

OFF Operation at 10 Mbps (if LNK LED active)

XMT Green ON Data telegrams are being sent

OFF Data telegrams are not being sent

RCV Yellow ON Data telegrams are being received

OFF Data telegrams are not being received

LNK Green ON Physical network connection ready to operate

OFF Physical network connection interrupted or not present

FL IL 24 BK-B-PAC

654403 1-7

1.4 Connecting the Supply Voltage

The module is operated using a +24 V DC SELV.

Typical Connection of the Supply Voltage

Figure 1-3 Typical connection of the supply voltage

� � " # � � � �

� �

�

�

�

�

�

�

�

�

	 �
 � �
 � �
 � � � � � � �
� � � � � � � � �
 � � � � � � �

� � ! � � �

� � �

� � �

� � �

	 � � �

� �

� �

� �

� �

� �

$

�

� �

$

�
� �

� �

$

�

� % & ' � % ()

* + , - ' �
 . %
& / '
 , � � +) '

� 0 � 1
� 0 � 1

FL IL 24 BK-B UM E

1-8 654403

1.5 Connector Assignment

Table 1-3 Connector assignment

Terminal
Point

Assignment Wire Color/Remark

Connector Power Connector

1.1 24 V DC
(US)

24 V Segment supply The supplied voltage is directly led to the potential
jumper.

1.2 24 V DC
(UBK)

24 V supply The communications power for the bus coupler and
the connected local bus devices is generated from
this power. The 24 V analog power (UANA) for the
local bus devices is also generated.

2.1, 2.2 24 V DC
(UM)

Main power The main power is routed to the local bus devices via
the potential jumpers.

1.3 LGND Reference potential
logic ground for UBK

The potential is the reference ground for the
communications power UBK.

2.3 SGND Reference potential
for US and UM

The reference potential is directly led to the potential
jumper and is, at the same time, ground reference for
the main and segment supply.

1.4, 2.4 FE Functional earth
ground (FE)

The functional earth ground must be connected to
the 24 V DC supply/functional earth ground
connection. The contacts are directly connected to
the potential jumper and FE springs on the bottom of
the housing. The terminal is grounded when it is
snapped onto a grounded DIN rail. Functional earth
ground is only used to discharge interference.

The GND potential jumper carries the total current from the main and
segment circuits. The total current must not exceed the maximum
current carrying capacity of the potential jumper (8 A). If the 8 A limit is
reached at one of the potential jumpers US, UM, and GND during
configuration, a new power terminal must be used.

The functional earth ground must be connected through the 24 V DC
supply/functional earth ground connection.

FL IL 24 BK-B-PAC

654403 1-9

1.6 Supported Inline Modules

Table 1-4 Digital I/O Modules

Designation Features Order No.

IB IL 24 DI 2 2 inputs, 4-wire termination, 24 V DC 27 26 20 1

IB IL 24 DI 2-PAC 2 inputs, 4-wire termination, 24 V DC 28 61 22 1

IB IL 24 DI 2-NPN 2 inputs with negative logic, 4-wire termination, 24 V DC 27 40 11 2

IB IL 24 DI 2-NPN-PAC 2 inputs with negative logic, 4-wire termination, 24 V DC 28 61 48 3

IB IL 24 EDI 2 2 inputs, 4-wire termination, with electronic overload protection
and diagnostics

27 42 60 9

IB IL 24 EDI 2-PAC 2 inputs, 4-wire termination, with electronic overload protection
and diagnostics

28 61 62 9

IB IL 24 EDI 2-DESINA 2 inputs, 4-wire termination according to Desina specification, with
electronic overload protection and diagnostics

27 40 32 6

IB IL 24
EDI 2-DESINA-PAC

2 inputs, 4-wire termination according to Desina specification, with
electronic overload protection and diagnostics

28 61 52 2

IB IL 24 DI 4 4 inputs, 3-wire termination, 24 V DC 27 26 21 4

IB IL 24 DI 4-PAC 4 inputs, 3-wire termination, 24 V DC 28 61 23 4

IB IL 24 DI 8 8 inputs, 4-wire termination, 24 V DC 27 26 22 7

IB IL 24 DI 8-PAC 8 inputs, 4-wire termination, 24 V DC 28 61 24 7

IB IL 24 DI 8 T2 8 inputs, 4-wire termination, 24 V DC,
acc. to EN 61131-2 Type 2

28 60 43 9

IB IL 24 DI 8 T2-PAC 8 inputs, 4-wire termination, 24 V DC,
acc. to EN 61131-2 Type 2

28 62 20 4

IB IL 24 DI 16 16 inputs, 3-wire termination, 24 V DC 27 26 23 0

IB IL 24 DI 16-PAC 16 inputs, 3-wire termination, 24 V DC 28 61 25 0

IB IL 24 DI 16-NPN 16 inputs with negative logic,
3-wire termination, 24 V DC

28 63 51 7

IB IL 24 DI 16-NPN-PAC 16 inputs with negative logic, 3-wire connection,
 24 V DC

28 63 52 0

IB IL 24 DI 32/HD 32 inputs, 1-wire termination, 24 V DC 28 60 78 5

IB IL 24 DI 32/HD-PAC 32 inputs, 1-wire termination, 24 V DC 28 62 83 5

IB IL 120 DI 1 1 input, 3-wire termination, 120 V AC 28 36 70 6

IB IL 120 DI 1-PAC 1 input, 3-wire termination, 120 V AC 28 61 91 7

IB IL 230 DI 1 1 input, 3-wire termination, 230 V AC 27 40 34 2

IB IL 230 DI 1-PAC 1 input, 3-wire termination, 230 V AC 28 61 54 8

IB IL 24 DO 2 2 outputs, 500 mA, 4-wire termination, 24 V DC 27 40 10 6

IB IL 24 DO 2-PAC 2 outputs, 500 mA, 4-wire termination, 24 V DC 28 61 47 0

FL IL 24 BK-B UM E

1-10 654403

IB IL 24 DO 2-2A 2 outputs, 2 A, 4-wire termination, 24 V DC 27 26 24 3

IB IL 24 DO 2-2A-PAC 2 outputs, 2 A, 4-wire termination, 24 V DC 28 61 26 3

IB IL 24 DO 2-NPN 2 outputs with negative logic, 500 mA, 4-wire termination, 24 V DC 27 40 11 9

IB IL 24 DO 2-NPN-PAC 2 outputs with negative logic, 500 mA, 4-wire termination, 24 V DC 28 61 49 6

IB IL 24 EDO 2 2 outputs, 500 mA, 4-wire termination, 24 V DC, extensible
diagnostics, parameterizable outputs

27 42 59 9

IB IL 24 EDO 2-PAC 2 outputs, 500 mA, 4-wire termination, 24 V DC, extensible
diagnostics, parameterizable outputs

28 61 61 6

IB IL 24 DO 4 4 outputs, 500 mA, 3-wire termination, 24 V DC 27 26 25 6

IB IL 24 DO 4-PAC 4 outputs, 500 mA, 3-wire termination, 24 V DC 28 61 27 6

IB IL 24 DO 8 8 outputs, 500 mA, 4-wire termination, 24 V DC 27 26 26 9

IB IL 24 DO 8-PAC 8 outputs, 500 mA, 4-wire termination, 24 V DC 28 61 28 9

IB IL 24 DO 8-NPN 8 outputs with negative logic, 500 mA,
4-wire termination, 24 V DC

28 63 54 6

IB IL 24 DO 8-NPN-PAC 8 outputs with negative logic, 500 mA,
4-wire termination, 24 V DC

28 63 53 3

IB IL 24 DO 8-2A 8 outputs, 2 A, 4-wire termination, 24 V DC 27 42 11 7

IB IL 24 DO 8-2A-PAC 8 outputs, 2 A, 4-wire termination, 24 V DC 28 61 60 3

IB IL 24 DO 16 16 outputs, 500 mA, 3-wire termination, 24 V DC 27 26 27 2

IB IL 24 DO 16-PAC 16 outputs, 500 mA, 3-wire termination, 24 V DC 28 61 29 2

IB IL 24 DO 32/HD 32 outputs, 500 mA, 1-wire termination, 24 V DC 28 60 93 4

IB IL 24 DO 32/HD-PAC 32 outputs, 500 mA, 1-wire termination, 24 V DC 28 62 82 2

IB IL DO 1 AC 1 output, 12 V - 253 V AC, 500 mA, 3-wire termination 28 36 74 8

IB IL DO 1 AC-PAC 1 output, 12 V - 253 V AC, 500 mA, 3-wire termination 28 61 92 0

IB IL DO 4 AC-1A 1 output, 12 V - 253 V AC, 1 mA, 3-wire termination 27 42 69 6

IB IL DO 4 AC-1A-PAC 1 output, 12 V - 253 V AC, 1 mA, 3-wire termination 28 61 65 8

IB IL 24/230 DOR 1/W 1 PDT relay contact, 5 V - 253 V AC, 3 A 28 36 43 4

IB IL 24/230 DOR 1/W-
PAC

1 PDT relay contact, 5 V - 253 V AC, 3 A 28 61 88 1

IB IL 24/230 DOR 1/W-PC 1 PDT relay contact, 5 V - 253 V AC, 3 A for inductive and
capacitive loads

28 60 40 0

IB IL 24/230 DOR 1/W-PC-
PAC

1 PDT relay contact, 5 V - 253 V AC, 3 A for inductive and
capacitive loads

28 62 17 8

IB IL 24/230 DOR 4/W 4 PDT relay contacts, 5 V - 253 V AC, 3 A 28 36 42 1

IB IL 24/230 DOR 4/W-
PAC

4 PDT relay contacts, 5 V - 253 V AC, 3 A 28 61 87 8

Designation (Contd.) Features Order No.

FL IL 24 BK-B-PAC

654403 1-11

Table 1-5 Analog I/O Modules

IB IL 24/230 DOR 4/W-PC 4 PDT relay contacts, 5 V - 253 V AC, 3 A for inductive and
capacitive loads

28 60 41 3

IB IL 24/230 DOR 4/W-PC-
PAC

4 PDT relay contacts, 5 V - 253 V AC, 3 A for inductive and
capacitive loads

28 62 18 1

IB IL 24/48 DOR/2W 2 relais PDT contacts, 5 V - 50 V AC, 5 V - 120 V DC, 2 A 28 62 97 4

IB IL 24/48 DOR/2W-PAC 2 relais PDT contacts, 5 V - 50 V AC, 5 V - 120 V DC, 2 A 28 63 11 9

Designation (Contd.) Features Order No.

Designation Features Order No.

IB IL AI 2/4-20 2 inputs, 2-wire termination, 24 V DC, 0 - 10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA

28 60 44 2

IB IL AI 2/4-20-PAC 2 inputs, 2-wire termination, 24 V DC, 0 -10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA

28 62 21 7

IB IL AI 2/SF 2 inputs, 2-wire termination, 24 V DC, 0 -10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA

27 26 28 5

IB IL AI 2/SF-PAC 2 inputs, 2-wire termination, 24 V DC, 0 -10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA

28 61 30 2

IB IL AI 2/SF-230 2 inputs, 2-wire termination, 24 V DC, 0 -10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA, 230 Hz

27 40 81 8

IB IL AI 2/SF-230-PAC 2 inputs, 2-wire termination, 24 V DC, 0 -10 V, ±10 V
0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA, 230 Hz

28 61 57 7

IB IL AI 8/SF 8 inputs, 2-wire contact, 24 V DC, 0 - 5 V, 0 - 10 V, ±10 V, 0 - 25
V, 0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA

27 27 83 1

IB IL AI 8/SF-PAC 8 inputs, 2-wire contact, 24 V DC, 0 - 5 V, 0 - 10 V, ±10 V, 0 - 25
V, 0 - 20 mA, 4 - 20 mA, ±20 mA, 0 - 40 mA

28 61 41 2

IB IL AI 8/IS 8 inputs, 3-wire termination, 24 V DC, 0 -20 mA,
4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA

27 42 74 8

IB IL AI 8/IS-PAC 8 inputs, 3-wire termination, 24 V DC, 0 -20 mA,
4 - 20 mA, ±20 mA, 0 - 40 mA, ±40 mA

28 61 66 1

IB IL TEMP 2 RTD 2 inputs, 4-wire termination, 16 bits, resistance sensors 27 26 30 8

IB IL TEMP 2 RTD-PAC 2 inputs, 4-wire termination, 16 bits, resistance sensors 28 61 32 8

IB IL TEMP 2 RTD/300 2 inputs, 4-wire termination, 16 bits, resistance sensors 27 40 76 6

IB IL TEMP 2 RTD/300-
PAC

2 inputs, 4-wire termination, 16 bits, resistance sensors 28 61 55 1

IB IL TEMP 2 UTH 2 inputs, 2-wire termination, 16 bits, thermocouples 27 27 76 3

IB IL TEMP 2 UTH-PAC 2 inputs, 2-wire termination, 16 bits, thermocouples 28 61 38 6

IB IL TEMPCON UTH 8 inputs, 8 outputs, control function 28 19 31 2

IB IL TEMPCON UTH-PAC 8 inputs, 8 outputs, control function 28 61 80 7

FL IL 24 BK-B UM E

1-12 654403

Table 1-6 Special Function Modules

Table 1-7 Motor Terminals

IB IL AO 1/SF 1 output, 2-wire termination, 24 V DC, 0 - 20 mA,
4-20 mA, 0-10 V

27 26 29 8

IB IL AO 1/SF-PAC 1 output, 2-wire termination, 24 V DC, 0 - 20 mA,
4-20 mA, 0-10 V

28 61 31 5

IB IL AO 1/U/SF 1 output, 2-wire termination, 24 V DC, 0 - 10 V 27 27 77 6

IB IL AO 1/U/SF-PAC 1 output, 2-wire termination, 24 V DC, 0 - 10 V 28 61 39 9

IB IL AO 2/SF 2 outputs, 2-wire termination, 24 V DC, 0 - 20 mA,
4-20 mA, 0-10 V

28 62 80 6

IB IL AO 2/SF-PAC 2 outputs, 2-wire termination, 24 V DC, 0 - 20 mA,
4-20 mA, 0-10 V

28 63 08 3

IB IL AO 2/U/BP 2 outputs, 2-wire termination, 24 V DC, 0 - 10 V, ±10 V 27 32 73 2

IB IL AO 2/U/BP-PAC 2 outputs, 2-wire termination, 24 V DC, 0 - 10 V, ±10 V 28 61 46 7

Designation (Contd.) Features Order No.

Designation Features Order No.

IB IL SSI 1 absolute encoder input, 4 digital inputs, 4 digital outputs, 500 mA,
3-wire termination, 24 V DC

28 36 34 0

IB IL SSI-PAC 1 absolute encoder input, 4 digital inputs, 4 digital outputs, 500 mA,
3-wire termination, 24 V DC

28 61 86 5

IB IL SSI-IN 1 absolute encoder input, 24 V DC, 28 19 30 9

IB IL SSI-IN-PAC 1 absolute encoder input, 24 V DC, 28 19 57 4

IB IL INC 1 incremental encoder input, 4 digital inputs, 4 digital outputs, 500
mA, 3-wire termination, 24 V DC

28 36 32 4

IB IL INC-PAC 1 incremental encoder input, 4 digital inputs, 4 digital outputs, 500
mA, 3-wire termination, 24 V DC

28 61 84 9

IB IL CNT 1 counter input, 1 control input, 1 digital output, 500 mA, 3-wire
termination, 24 V DC

28 36 33 7

IB IL CNT-PAC 1 counter input, 1 control input, 1 digital output, 500 mA, 3-wire
termination, 24 V DC

28 61 85 2

IB IL IMPULSE IN 1 input for magnetostrictive linear measuring scales with impulse
interface

28 19 23 1

IB IL IMPULSE IN-PAC 1 input for magnetostrictive linear measuring scales with impulse
interface

28 61 85 2

Designation Features Order No.

IB IL 24 TC Thermistor terminal 27 27 41 7

IB IL 24 TC-PAC Thermistor terminal 28 61 36 0

FL IL 24 BK-B-PAC

654403 1-13

Table 1-8 Power and Segment Terminals

Designation Features Order No.

IB IL 24 PRW IN Power terminal, 24 V DC 27 26 31 1

IB IL 24 PWR IN-PAC Power terminal, 24 V DC 28 61 33 1

IB IL 24 PRW IN/F Power terminal, 24 V DC with fuse 27 27 90 9

IB IL 24 PRW IN/F-PAC Power terminal, 24 V DC with fuse 28 61 43 8

IB IL 24 PRW IN/F-D Power terminal, 24 V DC with fuse and diagnostics 28 36 66 7

IB IL 24 PRW IN/F-D-PAC Power terminal, 24 V DC with fuse and diagnostics 28 61 89 4

IB IL 24 PRW IN/2-F Power terminal, 24 V DC with fuse 28 60 01 5

IB IL 24 PRW IN/2-F-PAC Power terminal, 24 V DC with fuse 28 62 13 6

IB IL 24 PRW IN/2-F-D Power terminal, 24 V DC with fuse and diagnostics 28 60 28 0

IB IL 24 PRW IN/2-F-D-
PAC

Power terminal, 24 V DC with fuse and diagnostics 28 62 15 2

IB IL 24 PWR IN/M Power terminal, 24 V DC 28 61 02 7

IB IL 24 PWR IN/R Power terminal, 24 V DC 27 42 76 4

IB IL 24 PWR IN/R-PAC Power terminal, 24 V DC 28 61 67 4

IB IL 120 PRW IN Power terminal, 120 V AC with fuse 27 31 70 4

IB IL 120 PWR IN-PAC Power terminal, 120 V AC with fuse 28 61 45 4

IB IL 230 PRW IN Power terminal, 230 V AC with fuse 27 40 33 9

IB IL 230 PWR IN-PAC Power terminal, 230 V AC with fuse 28 61 53 5

IB IL 24 SEG Segment terminal, 24 V DC 27 26 32 4

IB IL 24 SEG-PAC Segment terminal, 24 V DC 28 61 34 4

IB IL 24 SEG/F Segment terminal, 24 V DC with fuse 27 27 74 7

IB IL 24 SEG/F-PAC Segment terminal, 24 V DC with fuse 28 61 37 3

IB IL 24 SEG/F-D Segment terminal, 24 V DC with fuse and diagnostics 28 36 68 3

IB IL 24 SEG/F-D-PAC Segment terminal, 24 V DC with fuse and diagnostics 28 61 90 4

IB IL 24 SEG-ELF 24 V DC segment terminal with electronic fuse 27 27 78 9

IB IL 24 SEG-ELF-PAC 24 V DC segment terminal with electronic fuse 28 61 40 9

IB IL PD GND Terminal for GND potential distribution 28 63 06 7

IB IL PD GND-PAC Terminal for GND potential distribution 28 62 99 0

IB IL PD 24V Terminal for potential distribution main voltage 28 63 05 4

IB IL PD 24V-PAC Terminal for potential distribution main voltage 28 62 98 7

FL IL 24 BK-B UM E

1-14 654403

1.7 Basic Structure of Low-Level
Signal Modules

Regardless of the function and the design width, an Inline low-level signal
module consists of the electronics base (or base for short) and the plug-in
connector (or connector for short).

Figure 1-4 Basic structure of an Inline module

The most important of the components shown in Figure 1-4 are described
in "Electronics Base" on page 1-15 and "Connectors" on page 1-16.

ZBFM: Zack marker strips, flat
(see also Section "Function Identification and Labeling" on
page 1-20)

	 � � % &
 2 % (- � � %
 , ' 3 / (% . 2 ,
� �) & (4 '
 � � + & . % 4

� (& 3 /
 5 � �
 1 � �
 � (.)

1 (& (
 � � + & . % 4 �) � &
 3 � � . % 4

6 � 	 �
 , (� 7 ' �
5 � �
 , � � +) '
 . � ' % & . 5 . 3 (& . � %

� (3 7
 2 % (- � � %
 , ' 3 / (% . 2 ,

	 + % 3 & . � %
3 �) � � � 3 � � . % 4

1 . (4 % � 2 & . 3
 (% �
 2 & (& + 2
. % � . 3 (& � � 2

6 � 	 �
 , (� 7 ' �
 5 � �
 3 � % % ' 3 & � � 2

� & & (3 / , ' % &
 5 � �
) (8 ')
 -) (& '

� (3 7
 3 � % % ' 3 & � �
 2 / (5 &
) (& 3 / � (% 2 - (� ' % &
 5 . ') �

6 � 	 �
 , (� 7 ' �
 5 � �
 2 . 4 % ()
 � ! �

6 � 	 �
 , (� 7 ' �
 5 � �
 2 . 4 % ()
 � ! �

	 � � % &
 3 � % % ' 3 & � �
 2 / (5 &
) (& 3 /

� . 4 % ()
 & ' � , . % () 2
 � ! �

	 9
 � �
 2 . 4 % ()
 & ' � , . % () 2
 � ! �

� �) & (4 '
 & ' � , . % () 2

	 ' (& / ' � 7 ' :
 5 � �
7 ' : ; (: ! 5 ' (& / ' � 7 ' :
 3 � % % ' 3 & . � %

� � � � � � � � 	 �
 � �
 �

� � � � � � � � �

" " � � � � � �

FL IL 24 BK-B-PAC

654403 1-15

1.7.1 Electronics Base

The electronics base holds the entire electronics for the Inline module and
the potential and data routing.

Design widths The electronics bases for low-level signal modules are available in a width
of 8 terminal points (8-slot terminal) or 2 terminal points (2 slot terminal).
Exceptions are combinations of these two basic terminal widths (see also
Section "Dimensions of Low-Level Signal Modules" on page 1-24).

The components required for labeling are listed in the Phoenix Contact
"CLIPLINE" catalog.

FL IL 24 BK-B UM E

1-16 654403

1.7.2 Connectors

The I/O or supply voltages are connected using a pluggable connector.

Advantages This snap-in-place connection offers the following advantages:

– Simple exchange of module electronics for servicing. There is no need
to remove the wiring.

– Different connectors can be used on one electronics base, depending
on your requirements.

Connector width Regardless of the width of the electronics base, the connectors have a
width of two terminal points. This means that you must plug 1 connector on
a 2-slot base, 2 connectors on a 4-slot base, and 4 connectors on an 8-slot
base.

Connector types The following connector types are available:

Figure 1-5 Connector types of Inline

1 Standard connector

The green standard connector is used for the connection of two
signals in 4-wire technology (e.g., digital I/O signals).
The black standard connector is used for supply terminals. The
adjacent contacts are jumpered internally (see Figure 1-6 on
page 1-18).

2 Shield connector

� � �

� � " � � � � �

FL IL 24 BK-B-PAC

654403 1-17

Connector
identification

All connectors are offered with and without color print. The connectors with
color print (marked with CP in the Order Designation) have terminal points
that are color-coded according to their functions.

The following colors indicate the signals of the terminal points:

This green connector is used for signals connected using shielded
cables (e.g., analog I/O signals).
FE or shielding is connected by a shield connection clamp rather
than by a terminal point.

3 Extended double signal connector

This green connector is used for the connection of four signals in 3-
wire technology (e.g., digital I/O signals).

Table 1-9 Terminal point color-coding

Color Terminal Point Signal

Red +

Blue -

Green/
yellow

Functional earth ground

FL IL 24 BK-B UM E

1-18 654403

 Internal structure of
the connectors

Figure 1-6 Internal structure of the connectors

A Green connector for I/O connection

B Black connector for supply terminals

C Shield connector for analog terminals

D Double signal connector for I/O connection

Jumpered terminal points integrated into the connectors are shown in
Figure 1-6.
The shield connector is jumpered through the shield connection. All other
connectors are jumpered through terminal point connection.

To avoid a malfunction, only snap a suitable connector onto a module.
Refer to the module-specific data sheet to select the correct connectors.

The black connector must not be placed on a module for which a double
signal connector is to be used. Mixing this up leads to a short-circuit
between two signal terminal points (1.4 - 2.4).

Only place black connectors on supply terminals.
When the terminal points are jumpered, power is carried through the
jumpering in the connector and not through the printed circuit board of
the module.

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� � �

� � " � � � � �

� �

�

�

�

�

�

�

�

�

1

� �

�

�

�

�

�

�

�

�

"

�

"

�

FL IL 24 BK-B-PAC

654403 1-19

Connector coding You can prevent the mismatching of connectors by coding the base and the
connector.

Figure 1-7 Connector keying

• Plug a keying profile (disc) into the keyway in the base (1) and turn it
away from the small plate (2) (Figure 1-7, Fig. A).

• Use a diagonal cutter to cut off the keying tab from the connector
(Figure 1-7, Fig. B).

Now, only the base and connector with the same keying will fit together
(Figure 1-7,Fig. C).

�

��

�� ����

� � " � � � � �

FL IL 24 BK-B UM E

1-20 654403

1.8 Function Identification and Labeling

Function
identification

The modules are color-coded to enable visual identification of the functions
(1 in Figure1-8).
.

Figure1-8 Function identification

The following colors indicate the functions:

Connector
identification

The color-coding of the terminal points is described on page 1-17.

Table 1-10 Module color-coding

Color Function of the Module

Light blue Digital input 24 V DC area

Pink Digital output 24 V DC area

Blue Digital input 120/230 V AC area

Red Digital output 120/230 V AC area

Green Analog input

Yellow Analog output

Orange Fieldbus coupler, special function modules

Black Power terminal / segment terminal

" " � � � � � "

�

FL IL 24 BK-B-PAC

654403 1-21

Labeling/
terminal point
numbering

Terminal point numbering is illustrated using the example of an 8-slot
module.

Figure1-9 Terminal point numbering

Slot/connector The slots (connectors) on a base are numbered consecutively (1 in
Figure1-9). This numbering is not shown on the actual module.

Terminal point The terminal points on each connector are marked X.Y.

X is the number of the terminal point row on the connector. It is indicated
above the terminal point row (2 in Figure1-9).

Y is the terminal point number in a row. It is directly indicated on the
terminal point (3 in Figure1-9).

The precise designation for a point is thus specified by the slot and terminal
point. The highlighted terminal point (4 in Figure1-9) would be numbered
as follows: slot 3, terminal point 2.3.

Additional labeling In addition to this module marking, you can identify the slots, terminal
points, and connections using marker strips and labeling fields.

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� � � �

" " � � � � � "

�

�

�

�

�

�

�

�

�

�

�

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�

� � �
�

� � <

FL IL 24 BK-B UM E

1-22 654403

Figure1-10 Labeling of modules

" " � � � � � �

�

�

�

�

�

�

FL IL 24 BK-B-PAC

654403 1-23

Various options are available for labeling the slots and terminal points:

1 Each connector can be labeled individually with Zack markers.

2 / 3 Another option is to use a large labeling field. This labeling field is
available in two widths, either as a labeling field covering one
connector (2) or as a labeling field covering four connectors (3). You
can label each channel individually with free text. On the upper
connector head there is a keyway for attaching this labeling field.
The labeling field can be tilted up and down. At each end there is a
small latch which ensures that the labeling field remains in place.

4 / 5 Each signal can be labeled individually using Zack markers. On a
double signal connector, the upper keyway (4) is designed for
labeling signals 1/2 and the lower keyway (5) is for signals 3/4.

6 On the electronics base each slot can be labeled individually using
Zack markers. These markers are covered when a connector is
plugged in.

Using the markers on the connector and on the electronics base, you can
clearly assign both connector and slot.

The components required for labeling are listed in the Phoenix Contact
"CLIPLINE" catalog.

FL IL 24 BK-B UM E

1-24 654403

1.9 Dimensions of Low-Level Signal Modules

Today, small I/O stations are frequently installed in 80 mm (3.150 in.)
standard switch boxes. Inline modules are designed so that they can be
used in this type of control box.

The housing dimensions of a module are determined by the dimensions of
the electronics base and the dimensions of the connector.

Electronics bases for low-level signal modules are available in three widths
(12.2 mm, 24.4 mm and 48.8 mm [0.480 in., 0.961 in. and 1.921 in.]).

They take one (1), two (2) or four (4), 12.2 mm (0.480 in.) wide connectors.

When a connector is plugged in, each terminal depth is 71.5 mm (2.815
in.).

The height of the module depends on the connector used. The connectors
are available in three different versions (see Figure1-14).

2-slot housing

Figure1-11 Dimensions of the electronics bases (2-slot housing)

� � = "
 , ,
 > � � � � " ? @

� � = �
 , ,
> � � � � � ? @

�
�
�

,

,

>
�
��
�
�
?@

" " � � � � � �

FL IL 24 BK-B-PAC

654403 1-25

4-slot housing

Figure1-12 Dimensions of the electronics bases (4-slot housing)

8-slot housing

Figure1-13 Dimensions of the electronics bases (8-slot housing)

� � = �
 , ,
> � � # � � ? @

" " � � � � � �

�
�
�

,

,

>
�
��
�
�
?@

� � = "
 , ,
 > � � � � " ? @

" " � � � � � �
� � = �
 , ,
> � � # � � ? @

� � = "
 , ,
 > � � � � " ? @

�
�
�

,

,

>
�
��
�
�
?@

FL IL 24 BK-B UM E

1-26 654403

Connectors

Figure1-14 Connector dimensions

Key:

A Standard connector

B Shield connector

C Extended double signal connector

The depth of the connector does not influence the overall depth of the
module.

� �

�

�

�

�

�

�

�

�

�
�
�
=�

,

,

>
�
��
�
"
?@

� � = �
 , ,

 > � � � � � ? @

� �

�

�

�

�

�

�

�

�

� � = �
 , ,

 > � � � � � ? @

�
�
�

,

,

>
"
��
#
�
?@

� �

�

�

�

�

�

�

�

�

"

�

"

�

� � = �
 , ,

 > � � � � � ? @

�
�
�

,

,

>
"
��
#
�
?@

� � �

" " � � � � " �

FL IL 24 BK-B-PAC

654403 1-27

1.10 Electrical Potential and Data Routing

An important feature of the INTERBUS Inline and Ethernet/Inline bus
coupler product ranges is their internal potential routing system. The
electrical connection between the individual station devices is created
automatically when the station is installed. When the individual station
devices are connected, a power rail is created for the relevant circuit. This
is created mechanically through the interlocking of knife and featherkey
contacts on the adjacent modules.

A special segment circuit eliminates the need for additional external
potential jumpering to neighboring modules.

Two independent current circuits are realilzed within one station: the logic
circuit and the I/O circuit.

Figure 1-15 Potential and data routing

� � " � � � � �
�

(8 3

 #

� � � � " � �

FL IL 24 BK-B UM E

1-28 654403

Table 1-11 Potential jumper (see Figure 1-15)

No. Function Meaning

1 FE FE Functional earth ground

2 SGND SGND Ground of segment and main supply

3 24 V UM Supply for main circuit (if necessary with overload protection)

4 24 V US Supply for segment circuit (if necessary with overload protection)
This jumper does not exist in power levels 120/230 V AC.

5 LGND UL- Ground of communications power and I/O supply for analog
modules

6 24 V UANA I/O supply for analog modules

7 7.5 V UL+ Supply for module electronics

(9) FE spring FE contact to DIN rail

The GND potential jumper carries the total current from the main and
segment circuits. The total current must not exceed the maximum
current carrying capacity of the potential jumper (8 A). If the 8 A limit is
reached at one of the potential jumpers US, UM, and GND during
configuration, a new power terminal must be used.

The FE potential jumper must be connected via terminal point 1.4 or 2.4
at the Ethernet bus coupler to a grounding terminal (see Figure1-9). The
FE potential jumper is led through all of the modules and connected via
the FE spring to the grounded DIN rail of every supply terminal.

Table 1-12 Data jumper (see Figure 1-15)

No. Function Meaning

8a DI1 Local bus signal (Data IN)

8b DO1 Local bus signal (Data OUT)

8c DCLK Clock signal, local bus

FL IL 24 BK-B-PAC

654403 1-29

1.11 Circuits Within an Inline Station and
Provision of the Supply Voltages

There are several circuits within an Inline station. These are automatically
set up when the modules have been properly installed. The voltages of the
different circuits are supplied to the connected modules via the potential
jumpers.

Load capacity of the
jumper contacts

Observe the maximum current carrying capacity of the jumper contacts on
the side for each circuit. The load capacities for all potential jumpers are
given in the following sections.

For voltage connection refer to the notes given in the module-specific data
sheets.

Please refer to the module-specific data sheet for the circuit to which the
I/O circuit of a special module is to be connected.

The arrangement of the potential jumpers can be found in Section
"Electrical Potential and Data Routing" on page 1-27.

FL IL 24 BK-B UM E

1-30 654403

1.11.1 Supply of the Ethernet Bus Coupler

The supply voltage UBK and the segment voltage US must be connected
to the Ethernet bus coupler. From the supply voltage UBK , the voltages for
the logic circuit UL (7.5 V) and the supply of the modules for analog signals
UANA (24 V) are internally generated. The segment voltage is used to
supply the sensors and actuators.

Figure 1-16 Typical connection of the supply voltage

1.11.2 Logic Circuit UL

The logic circuit with communications power UL starts at the bus coupler,
is led through all modules of a station and cannot be supplied via another
supply terminal.

Function The logic circuit provides the communications power for all modules in the
station.

Voltage The voltage in this circuit is 7.5 V DC.

� � " # � � � �

� �

�

�

�

�

�

�

�

�

	 �
 � �
 � �
 � � � � � � �
� � � � � � � � �
 � � � � � � �

� � ! � � �

� � �

� � �

� � �

	 � � �

� �

� �

� �

� �

� �

$

�

� �

$

�
� �

� �

$

�

� % & ' � % ()

* + , - ' �
 . %
& / '
 , � � +) '

� 0 � 1
� 0 � 1

FL IL 24 BK-B-PAC

654403 1-31

Provision of UL The communications power UL is generated from the supply voltage UBK
of the bus coupler.
The communications power is not electrically isolated from the 24 V input
voltage for the bus coupler.

Current carrying
capacity

The maximum current carrying capacity of UL is 2 A.

1.11.3 Analog Circuit UANA

The analog circuit with the supply for the analog modules (here also called
analog voltage) UANA is supplied at the bus coupler and is led through all
the modules in an Inline station. Power cannot be supplied by the supply
terminals. UANA is not electrically isolated from UBK .

Function The module I/O devices for analog signals are supplied from the analog
circuit.

Voltage The voltage in this circuit is 24 V.

Provision of UANA The analog voltage UANA is generated from the main voltage UBK of the
bus coupler.

Current carrying
capacity

The maximum current carrying capacity of UANA is 0.5 A.

Figure 1-17 Logic and analog circuit

FL IL 24 BK-B Ethernet bus coupler

PWR IN Power terminal

SEG/F Segment terminal with fuse as an example of a
segment terminal

� " � � � � � �

� 9 0 ! 		 �
 � �
 � �
 � � � � � � � � A �
 � �

� �

� �

� �

� � � �

0 � 1 �

� �

FL IL 24 BK-B UM E

1-32 654403

1.11.4 Main Circuit UM

The main circuit with the main voltage UM starts at the bus coupler or a
power terminal and is led through all subsequent modules until it reaches
the next power terminal. A new circuit that is electrically isolated from the
previous one begins at the next power terminal.

Several power terminals can be used within one station.

Function Several independent segments can be created within the main circuit. The
main circuit provides the main voltage for these segments. For example, a
separate supply for the actuators can be provided in this way.

Voltage

Current carrying
capacity

The maximum current carrying capacity is 8 A (total current with the
segment circuit). If the limit value of the common GND potential jumper for
UM and US is reached (total current of US and UM), a new power terminal
must be used.

Figure 1-18 Main circuit

The maximum voltage in this circuit is 24 V DC. UM can only be a
maximum of 250 V AC when using special PWR-IN modules.

FL IL 24 BK-B Ethernet bus coupler

PWR IN Power terminal

SEG/F Segment terminal with fuse as an example of a
segment terminal

� " � � � � � �

� 9 0 ! 		 �
 � �
 � �
 � � � � � � � � A �
 � �

� �

� �

� �

� � � �

0 � 1 �

� �� �

FL IL 24 BK-B-PAC

654403 1-33

Provision of UM In the simplest case, the main voltage UM can be supplied at the bus
coupler and in which case it is 24 V DC.

The power UM can also be supplied via a power terminal. A power terminal
must be used if one of the following occurs:

1 Different voltage areas (e.g., 120 V AC) are to be created.

2 Electrical isolation is to be created.

3 The maximum current carrying capacity of a potential jumper (UM, US
or GND, total current of US and UM) is reached.

1.11.5 Segment Circuit

The segment circuit or auxiliary circuit with segment voltage US starts at the
Ethernet bus coupler or a supply terminal (power terminal or segment
terminal) and is led through all subsequent modules until it reaches the
next supply terminal.

Function You can use several segment terminals within a main circuit, and therefore
segment the main circuit. It has the same reference ground as the main
circuit. This means that circuits with different fuses can be created within
the station without external cross wiring.

Voltage The voltage in this circuit should not exceed 24 V DC.

Current carrying
capacity

The current carrying capacity is 8 A, maximum (total current with the main
circuit). If the limit value of the common potential jumper for UM and/or US
is reached (total current of US and UM), a new power terminal must be
used.

FL IL 24 BK-B UM E

1-34 654403

Generation of US There are various ways of providing the segment voltage US :

1 The segment voltage can be supplied at the Ethernet/Inline bus coupler
or a power terminal.

2 The segment voltage can be tapped from the main voltage at the
Ethernet/Inline bus coupler or a power terminal using a jumper or a
switch.

3 A segment terminal can be used with a fuse. Within this terminal the
segment voltage is automatically tapped from the main power.

4 A segment terminal can be used without a fuse and the segment
voltage can be tapped from the main voltage using a jumper or a
switch.

Figure 1-19 Segment circuit

With 120 V / 230 V AC voltage levels, segments cannot be created. In
this case, only the main circuit is used.

� " � � � � � �

� 9 0 ! 		 �
 � �
 � �
 � � � � � � � � A �
 � �

� �

� �

� �

� � � �

0 � 1 �

� �� � � �

FL IL 24 BK-B-PAC Ethernet/Inline bus coupler

PWR IN Power Terminal

SEG/F Segment terminal with fuse as an example of a
segment terminal

FL IL 24 BK-B-PAC

654403 1-35

1.12 Voltage Concept

The Ethernet bus coupler and the Inline local bus system have a defined
potential and grounding concept.

This avoids an undesirable effect on I/O devices in the logic area,
suppresses undesirable compensating currents, and increases noise
immunity.

Electrical isolation:
Ethernet

The Ethernet interface is electrically isolated from the bus coupler logic.
The Ethernet cable shielding is directly connected to functional earth
ground. The device has two functional earth ground springs, which have
contact with the DIN rail when they are snapped on. The springs are used
to discharge interference, rather than serve as a protective earth ground.
To ensure effective interference discharge, even for dirty DIN rails,
functional earth ground is also led to terminals 1.4 and 2.4. Always ground
either terminal 1.4 or 2.4 (see Figure 1-32 on page 1-55). This also
grounds the Inline station of the bus coupler sufficiently up to the first power
terminal.

A 120 V AC or 230 V AC power terminal interrupts the FE potential jumper.
Therefore a 24 V DC power terminal, which is located directly behind such
an area, must also be grounded using the FE terminal point.

To avoid the flow of compensating currents, connect a suitably sized
equipotential bonding cable parallel to the Ethernet cable.

No electrical
isolation of the Inline
communications
power

The bus coupler does not have electrical isolation for the Inline module
communications power. UBK (24 V), UL (7.5 V), and UANA (24 V) are not
electrically isolated.

Isolated supply for
logic and I/O devices

The logic and I/O devices can be supplied by separate power supply units.
If you wish to use different potentials for the communications power (UBK)
and the segment/main voltage (US/UM), do not connect the GND and
GNDUBK grounds of the supply voltages.

FL IL 24 BK-B UM E

1-36 654403

Option 1 The Fieldbus coupler main voltage UM and the I/O supply US are provided
separately with the same ground potential from two voltage supplies:

Figure 1-20 Potential areas in the bus coupler (two voltage supplies)

Voltage areas:

� � " � � � � �

$ � �
 �
 > � � @

$ � �
 �
 > � � @

� � 3 ()
 8 + 2

9 & / ' � % ' &

� � � �

� � $

� � �
 > 0 � 1 � @

� �

�

�

�

�

�

� � � �

� �

� �
 �

� = �
 �

� �
 �

� = "
 �

� �
 �

"
 �

0 � 1 � �

1 Ethernet interface area

2 Functional earth ground (PE) and (shield) Ethernet interface area

3 Main voltage UM and I/O voltage US area

4 Inline communications power

FL IL 24 BK-B-PAC

654403 1-37

Option 2 Common supply of voltages UBK, UM, and US from one voltage supply:

Figure 1-21 Bus coupler potentials (one voltage supply)

Voltage areas:

Figure 1-22 Power connector for supply from a single power supply unit

� � " � � � � "

$ � �
 �
 > � � @

$ � �
 �
 > � � @

� � 3 ()
 8 + 2

9 & / ' � % ' &

� � � �

� � $

� � �
 > 0 � 1 � @

� �

�

�

�

�

�

� �

� �

� �

� �
 �

� = �
 �

� �
 �

� = "
 �

� �
 �

"
 �

0 � 1 � �

0 � 1

1 Ethernet interface area

2 Functional earth ground/(shield) Ethernet interface area, bus coupler

3 Main voltage UM and I/O voltage US area

With 120 V / 230 V AC voltage levels, segments cannot be created. In
this case, only the main circuit is used.

Adjacent power connectors can
only be used when all the
voltages supplied to the bus
coupler have the same reference
potential. Simply insert the
external jumper to correctly
connect all the supply points
(see "Typical connection of the
supply voltage" on page 1-30).

� �

�

�

�

�

�

�

�

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � � B + , - ' � ' �
 . %
& / '
 3 � % % ' 3 & � �

B + , - ' � ' �
 . %

& / '
 , � � +) '

9 C & ' � % ()
 * + , - ' �

� � " � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � ! � � ! � � � � !

0 � 1

� �
 �
 1 �

FL IL 24 BK-B UM E

1-38 654403

Potentials:
Digital module

The isolation of the I/O circuit of a digital module to the communications
power is only ensured if UBK and UM/US are provided from separate power
supplies.

An example of this principle is shown in Figure 1-23 on a section of an
Inline station.

Figure 1-23 Example: Interruption/creation of the potential jumpers by
means of the power terminal

The areas hatched in the figure show the points at which the
potential jumpers are interrupted.

� � �

� � " � � � � �

� � �

� �
 � �
 � �
 1 �
 � � �
 � �
 � �
 1 �
 � � � � � �
 � �
 � �
 � A �
 � �� �
 � �
 � �
 � A �
 � �

� � 3 ()
 8 + 2

� �

� �

� �

� �

� �

� �

� �

� � � � �

FL IL 24 BK-B-PAC

654403 1-39

Potentials: analog
module

The I/O circuit (measurement amplifier) of an analog module receives
floating power from the 24 V supply voltage UANA. The power supply unit
with electrical isolation is a component of an analog module. The voltage
UANA is looped through in each module and so is also available to the next
module.

Figure 1-24 Electrical isolation between Ethernet bus coupler and analog
module

The potential jumpers hatched in the figure are not used in the
analog module. This means that the 24 V supply of the bus coupler (UBK)
or the power terminal is always electrically isolated from the I/O circuit
(measurement amplifier) of the analog module. The I/O circuit of the analog
module is supplied by the analog circuit UANA.

� " � � � � � �

� �

� �
 � �
 � �
 � ! � 	

� � 3 ()
 8 + 2

	 �
 � �
 � �
 � � �

� � $

� � � �

� � �
 > 0 � 1 � @

� � �

9 9 � � � �

� 9 	

� �
 �

$ "
 �

 !
 $ � �
 �

� � �

D �

�

� �

� �
 � �
 � �
 � ! � 	
') ' 3 & � � % . 3

9 & / ' � % ' &

� �

�

�

�

�

�

� �
 �

� = �
 �

� �
 �

� = "
 �

� �
 �

"
 �

� � =
 � � ! � �

� � � � �

FL IL 24 BK-B UM E

1-40 654403

Electrically isolated
I/O supply

Several electrically isolated segment or main circuits can be created by
using power terminals. A power terminal interrupts the US/UM , and GND
potential jumpers and has terminal points for another power supply unit. In
this way, the I/O circuits of the Inline modules are electrically isolated from
one another before and after the power terminal.

During this process the 24 V power supply units on the low voltage side
must not be connected to one another.
One method of electrical isolation using a power terminal is illustrated in
Figure 1-25. If a number of grounds are connected, e.g., to functional earth
ground, the electrical isolation is lost.

Because US and UM can be supplied separately, it is possible to create
separate segment circuits using a segment terminal. Using a switch, it is
possible, for example, to create a switched segment circuit (see
Figure 1-25 on page 1-41). US and UM can be protected separately, yet still
have a common ground potential. Please observe the maximum total
current of 8 A.

FL IL 24 BK-B-PAC

654403 1-41

 I/O supplies electrically isolated from one another

Figure 1-25 Structure of I/O supplies that are electrically isolated from
one another

Potentials within the station:

1 Bus logic of the station

2 I/O (outputs)

3 I/O (inputs)

� �

�

�

�

�

�

�

�

�

	 �
 � �
 � �
 � � � � � � �
� � � � � � � � �
 � � � � � � �

� � ! � � �

� � �

� � �

� � �

	 � � �

� �

� �

� �

� �

� �

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� " � � � � � �
� � �
 !
 � � �

$�

� �

�

�

�

�

�

�

�

�

� �

� A �
 � �

$�

	 �
 � �
 � �
 � � � � � � � � �
 � �
 � �
 � A �
 � �

1 � 1 �

�

� � �
 !
 � � �
� �

$ �

FL IL 24 BK-B UM E

1-42 654403

1.13 Diagnostic and Status Indicators

All modules are provided with LED diagnostic and status indicators for local
error diagnostics.

Diagnostics The diagnostic indicators (red/green) indicate the type and location of the
error.

Once an error has been removed, the indicators immediately display the
current status.

Status The status indicators (yellow) display the status of the relevant inputs/
outputs or the connected device.

1.13.1 LEDs on the Ethernet Bus Coupler

Figure 1-26 LEDs on the Ethernet bus coupler

Refer to the module-specific data sheet for information about the
diagnostic and status indicators on each module.

� �

� �

� �

� " � � � � � "

� � �

� � �

� � �

	 � � �

� �

� �

FL IL 24 BK-B-PAC

654403 1-43

Diagnostics The following states can be read on the bus coupler:

Table 1-13 Diagnostic LEDs on the bus coupler

Des. Color Status Meaning

Electronics Module

UL Green ON 24 V supply, 7 V communications power/interface supply present

OFF 24 V supply, 7 V communications power/interface supply not present

UM Green ON 24 V main circuit supply present

OFF 24 V main circuit supply not present

US Green ON 24 V segment supply is present

OFF 24 V segment supply is not present

Ethernet Port

PP Green ON Plug & Play mode is activated

OFF Plug & Play mode is not activated

FAIL Red ON The firmware has detected an error

OFF The firmware has not detected an error

100 Green ON Operation at 100 Mbps (if LNK LED active)

OFF Operation at 10 Mbps (if LNK LED active)

XMT Green ON Data telegrams are being sent

OFF Data telegrams are not being sent

RCV Yellow ON Data telegrams are being received

OFF Data telegrams are not being received

LNK Green ON Physical network connection ready to operate

OFF Physical network connection interrupted or not present

FL IL 24 BK-B UM E

1-44 654403

1.13.2 Supply Terminal Indicators

Figure 1-27 Possible indicators on supply terminals
(segment terminal with and without fuse and
power terminal)

Diagnostics The following states can be read from the supply terminals:

� � " � � � � �

� �

� �

�

� �

� �

�

�

� � � �
9

� �

� �

�

�

� �

9
� � �

Table 1-14 Diagnostic LED on the power terminal

LED Color State Description of the LED States

UM
(2)

Green ON 24 V main circuit supply present

OFF Main circuit supply not present

Table 1-15 Diagnostic LED on the segment terminal

LED Color State Description of the LED States

US
(1)

Green ON 24 V segment circuit supply present

OFF Segment circuit supply not present

Table 1-16 Additional LED on supply terminals with fuse

LED Color State Description of the LED States

 E
(3)

Red ON Fuse not present or blown

OFF Fuse OK

FL IL 24 BK-B-PAC

654403 1-45

On modules with fuses, the green LED indicates that the main or
segment voltage is present at the line side of the fuse, meaning that if
the green LED is on, there is voltage on the line side of the fuse. If the
red LED is also on, the voltage is not present on the output side. Either
no fuse is available or it is faulty.

FL IL 24 BK-B UM E

1-46 654403

1.13.3 Input/Output Module Indicators

Figure 1-28 I/O module indicators

Diagnostics The following states can be read from the I/O modules:

Status The status of the input or output can be read on the relevant yellow LED:

� �

� �

� �

� �

� �

� �

� �

� �

" " � � � � " �

� �

� �

�

�

1�
�

1�

�
�

�

�
�

�
�

�
�

�

�

Table 1-17 Diagnostic LED of the I/O modules

LED Color State Description of the LED States

D
(1)

Green ON Local bus active

Flashing:

0.5 Hz
(slow)

Communications power present,
local bus not active

2 Hz
(medium)

Communications power present,
I/O error

4 Hz
(fast)

Communications power present,
module in front of the flashing module
has failed or the module itself is faulty;
Modules following the flashing module
are not part of the configuration frame

OFF Communications power not present,
local bus not active

FL IL 24 BK-B-PAC

654403 1-47

Assignment Between Status LED and I/O

1.13.4 Indicators on Other Inline Modules

Table 1-18 Status LEDs for the I/O terminals

LED Color State Description of the LED States

1, 2, 3, 4
(2)

Yellow ON Relevant input/output set

OFF Relevant input/output not set

The assignment of a status LED and the corresponding I/O is given in
the module-specific data sheet.

For diagnostic and status indicators on other Inline modules (e.g.,
special function modules or power modules) please refer to the module-
specific data sheet.

FL IL 24 BK-B UM E

1-48 654403

1.14 Mounting/Removing Modules and
Connecting Cables

1.14.1 Installation Instructions

1.14.2 Mounting and Removing Inline Modules

An Inline station can be set up by mounting the individual components side
by side. No tools are required. Mounting side by side automatically creates
voltage and bus signal connections (potential and data routing) between
the individual station components.

The modules are mounted perpendicular to the DIN rail. This ensures that
they can be easily mounted and removed even within limited space.

After a station has been set up, individual modules can be exchanged by
pulling them out or plugging them in. Tools are not required.

DIN rail All Inline modules are mounted on 35 mm (1.378 in.) standard DIN rails.

End clamp/CLIPFIX Mount end clamps on both sides of the Inline station. The end clamps
ensure that the Inline station is correctly assembled. End clamps fix the
Inline station on both sides and keep it from moving side to side on the
DIN rail. Phoenix Contact recommends using the CLIPFIX 35
(Order No. 30 22 21 8) or E/UK end clamp (Order No. 12 01 44 2).

To ensure installation is carried out correctly, please read "Installation
Instructions for the Electrical Engineer" supplied with the bus coupler.

Do not replace modules while the power is connected

Before removing or mounting a module, disconnect the power to the
entire station. Make sure the entire station is reassembled before
switching the power back on. Failure to observe this rule may damage
the module.

To remove the bus coupler, the left end clamp must be removed first.

FL IL 24 BK-B-PAC

654403 1-49

End plate An Ethernet Inline station must be terminated with an end plate. It has no
electrical function. It protects the station against ESD pulses and the user
against dangerous contact voltage. The end plate is supplied with the bus
interface module and needs not be ordered separately.

1.14.3 Mounting

When mounting a module, proceed as follows (Figure 1-29):

• First attach the electronics base, which is required for mounting the
station,
perpendicular to the DIN rail (A).

The keyway/featherkey connection links adjacent modules and
ensures safe potential routing.

• Next, attach the connectors to the corresponding base.

First, place the front connector shaft latching in the front snap-on
mechanism (C).

Then press the top of the connector towards the base until it snaps into
the back snap-on mechanism (D).

Ensure that all featherkeys and keyways on adjacent modules are
interlocked (B).

The keyways of an electronics base do not continue on a connector.
When snapping on an electronics base, there must be no connector on
the left-hand side of the base. If a connector is present, it will have to be
removed.

Use end clamps to fix the Inline station to the DIN rail
(see Ordering Data).

FL IL 24 BK-B UM E

1-50 654403

Figure 1-29 Snapping on a module

A B

C D

6138A015

FL IL 24 BK-B-PAC

654403 1-51

1.14.4 Removal

When removing a module, proceed as follows (Figure 1-30):

• If there is a labeling field, remove it (A1 in Fig. A).

Lift the connector of the module to be removed by pressing on the back
connector shaft latching (A2 in Figure A).

• Remove the connector (Fig. B).

• Remove the left-adjacent and right-adjacent connectors of the
neighboring modules (C). This prevents the voltage routing featherkeys
and the keyway/featherkey connection from being damaged. There
also is more space available for accessing the module.

• Press the release mechanism, (D1 in Fig. D) and remove the
electronics base from the DIN rail by pulling the base straight back
(D2 in Fig. D). If you have not removed the connector of the next
module on the left, remove it now in order to protect the potential
routing featherkeys and the keyway/featherkey connection.

If a module has more than one connector, all of these must be removed.
Below is a description of how to remove a 2-slot module.

To remove the bus coupler, the left end clamp must be removed first.

FL IL 24 BK-B UM E

1-52 654403

Figure 1-30 Removing a module

Replacing a module If you want to replace a module within the Inline station, follow the removal
procedure described above. Do not snap the connector of the module
directly to the left back on yet. First, insert the base of the new module.
Then reconnect all the connectors.

�

��

1

� " � � � � � �

� �

� �

1 �

1 �

1 �

Use end clamps to fix the Inline station to the DIN rail
(see Ordering Data).

FL IL 24 BK-B-PAC

654403 1-53

1.14.5 Replacing a Fuse

The power and segment terminals are available with or without fuses.

For modules with fuses, the voltage presence and the fuse state are
monitored and indicated by diagnostic indicators.

If a fuse is not present or defective, you must insert or replace it.

Follow these steps when replacing a fuse (see Figure 1-31):

• Lift the fuse lever (A).

• Insert the screwdriver behind a metal contact of the fuse (B).

• Carefully lift the metal contact of the fuse (C).

• Remove the fuse by hand (D).

• Insert a new fuse (E).

• Push the fuse lever down again until it clicks into place (F).

Observe the following when replacing a fuse in order to protect
your health and the system

1. Use the screwdriver carefully to avoid injury.

2. Lift the fuse out at the metal contact. Do not lift the fuse out at the
glass part as you may break it.

3. Carefully lift the fuse out at one side and remove it by hand. Make
sure the fuse does not fall into your system.

FL IL 24 BK-B UM E

1-54 654403

Figure 1-31 Replacing a fuse

� �

� 1

" " � � � � � �

9 	

FL IL 24 BK-B-PAC

654403 1-55

1.15 Grounding an Inline-Station

All devices in an Inline station must be grounded so that any possible
interference is shielded and discharged to ground potential. A wire of at
least 1.5 mm2 (16 AWG) must be used for grounding.

Ethernet bus coupler
and supply terminals

The bus coupler, power terminals, and segment terminals have FE springs
(metal clips) on the underside of the electronics base. These springs create
an electric connection to the DIN rail. Use grounding terminal blocks to
connect the DIN rail to protective earth ground. The modules are grounded
when they are snapped onto the DIN rail.

Required additional
grounding

In order to ensure reliable grounding even if the DIN rail is dirty or the metal
clip has been damaged, Phoenix Contact specifies that the bus coupler
must also be grounded via the FE terminal point (e.g., with the USLKG 5
universal ground terminal block, Order No. 04 41 50 4, see Figure 1-32).

Figure 1-32 Additional grounding of the FL IL 24 BK-B-PAC

� " � � � � � �

FL IL 24 BK-B UM E

1-56 654403

FE potential jumper The FE potential jumper (functional earth ground) runs from the bus
coupler through the entire Inline station. Ground the DIN rail. FE is
grounded when a module is snapped onto the DIN rail correctly. If supply
terminals are part of the station, the FE potential jumper is also connected
with the grounded DIN rail.

Low-level signal The other Inline low-level signal modules are automatically grounded via
the FE potential jumper when they are mounted adjacent to other modules.

Power level The FE potential jumper is also connected to the power modules.

The function of FE is to discharge interference.
It does not provide shock protection for people.

FL IL 24 BK-B-PAC

654403 1-57

1.15.1 Shielding an Inline Station

Shielding is used to reduce the effects of interference on the system.

In the Inline station, the Ethernet cable and the module connecting cables
for analog signals are shielded.

1.15.2 Shielding Analog Sensors and Actuators

Observe the following when using shielded cables:

– Fasten the shielding so that as much of the braided shield as
possible is held underneath the clamp of the shield connection.

– Make sure there is good contact between connector and module.

– Do not damage or squeeze wires. Do not strip off the wires too far.

– Make a clean wire connection.

– For maximum noise immunity, always connect analog sensors and
actuators using shielded, twisted-pair cables.

– Connect the shielding to the shield connector. The method for
connecting the shielding is described in Section 1.16.2, "Connecting
Shielded Cables Using the Shield Connector".

FL IL 24 BK-B UM E

1-58 654403

Analog input and output modules require different shielding connections.
The cable lengths must also be considered.

1.15.2.1 Connecting an IB IL 24 AI 2/SF Analog Input Module

• Connect the shielding to the shield connector (see Section 1.16.2,
"Connecting Shielded Cables Using the Shield Connector").

• When connecting the sensor shielding with FE potential, ensure a large
surface connection.

Within the module, ground is connected to FE via an RC- element.

Figure 1-33 Connection of analog sensors, signal cables
> 10 m (32.81 ft.)

A Module side

B Sensor side

Table 1-19 Overview: shield connection of analog sensors/actuators

Module Type Connection to the
Module

Cable
Length

Connection to the Sensor/
Actuator

Analog input
module IB IL AI 2/
SF

Within the module,
grounding is connected to
FE via an RC element.

< 10 m
(32.81 ft.)

–

> 10 m
(98.43 ft.)

Connect the sensor directly to
PE

Analog output
module IB IL AO ...

Via shield connection
clamp directly onto FE

< 10 m
(32.81 ft.)

 –

> 10 m
(32.81 ft.)

Isolate the actuator with an RC
element and connect it to PE

" " � � � � � �

� �

FL IL 24 BK-B-PAC

654403 1-59

1.15.2.2 Connecting an Analog Output Module IB IL AO ...

If you want to use both channels of the IB IL AI 2/SF module, there are
different ways of connecting the shielding, depending on the cross-
section.

1 Use a multi-wire cable for the connection of both sensors and
connect the shielding as described above to the shield connector.

2 Use a thin cable for the connection of each sensor and connect the
shielding of both cables together to the shield connector.

3 Use the standard connector (IB IL SCN-8; without shield connector).
Twist the braided shield of each cable and place it on one of the
terminal points to be used for FE connection.
You should only use this option if the cross-section is too large and
the first two methods are not possible.

• Connect the shielding via the shield connector (see Section 1.16.2,
"Connecting Shielded Cables Using the Shield Connector").

• When connecting the shielding with the FE potential, ensure a large
surface connection.

Danger of creating ground loops

The shielding must only be directly connected with the ground potential
at one point.

FL IL 24 BK-B UM E

1-60 654403

– For cable lengths exceeding 10 meters (32.81 ft.) the actuator side
should always be isolated by means of an RC element.
The capacitor C should typically have values of 1 nF to 15 nF. The
resistor R should be at least 10 MΩ.

Figure 1-34 Connection of actuators, signal cables > 10 m (32.808 ft.)

A Module side

B Actuator side

" " � � � � � �

� �

� �

FL IL 24 BK-B-PAC

654403 1-61

1.16 Connecting Cables

Both shielded and unshielded cables are used in a station.

The cables for the I/O devices and supply voltages are connected using the
spring-cage connection method. This means that signals up to 250 V AC/
DC and 5 A with a conductor cross section of 0.2 mm2 through 1.5 mm2
(AWG 24 - 16) can be connected.

The Ethernet cable is connected via an 8-pos. RJ45 connector.

1.16.1 Connecting Unshielded Cables

Figure 1-35 Connecting unshielded cables

.4.&()�%- �

6138A016

A

B

FL IL 24 BK-B UM E

1-62 654403

Wire the connectors as required for your application.

When wiring, proceed as follows:

• Strip 8 mm (0.31 in.) off the cable.

• Push a screwdriver into the slot of the appropriate terminal point
(Figure 1-35, A), so that you can plug the wire into the spring opening.
Phoenix Contact recommends using a SFZ 1 -0 x 3,5 screwdriver
(Order No. 12 04 51 7; see "CLIPLINE" catalog from Phoenix Contact).

• Insert the wire (Figure 1-35, B). Remove the screwdriver from the
opening. This clamps the wire.

After installation, the wires and the terminal points should be labeled.

For connector assignment, please consult the appropriate module-
specific data sheet.

Fieldbus coupler and Inline wiring is normally done without ferrules.
However, it is possible to use ferrules. If using ferrules, make sure they
are properly crimped.

FL IL 24 BK-B-PAC

654403 1-63

1.16.2 Connecting Shielded Cables
Using the Shield Connector

Figure 1-36 Connecting the shield to the shield connector

(� "
 , ,

> � � " # � ? @

�
 , ,

> � � � � " ? @

� �

� �

" �

" # � � � � � �

FL IL 24 BK-B UM E

1-64 654403

This section describes the connection of a shielded cable, using an "analog
cable" as an example.

Connection should be carried out as follows:

Stripping cables • Strip the outer cable sheath to the desired length (a). (1)
The desired length (a) depends on the connection position of the wires
and whether there should be a large or a small space between the
connection point and the shield connection.

• Shorten the braided shield to 15 mm (0.59 in.). (1)

• Fold the braided shield back over the outer sheath. (2)

• Remove the protective foil.

• Strip 8 mm (0.32 in.) off the wires. (2)

Wiring the
connectors

• Push a screwdriver into the slot for the appropriate connection
(Figure 1-35 on page 1-61, 1), so that you can plug the wire into the
spring opening.
 recommends using a SFZ 1 -0 x 3,5 screwdriver
(Order No. 12 04 51 7; see "CLIPLINE" catalog from Phoenix Contact).

• Insert the wire (Figure 1-35 on page 1-61, detail 2). Remove the
screwdriver from the opening. This clamps the wire.

Connecting the
shield

• Open the shield connector. (3)

• Check the direction of the shield connection clamp in the shield
connector (see Figure 1-37).

• Place the cable with the folded braided shield in the shield connector.
(4)

• Close the shield connector. (5)

• Fasten the screws for the shield connector using a screwdriver. (6)

Inline wiring is normally done without ferrules. However, it is possible to
use ferrules. If using ferrules, make sure they are properly crimped.

For connector assignment, please consult the appropriate module-
specific data sheet.

FL IL 24 BK-B-PAC

654403 1-65

Figure 1-37 Shield connection clamp alignment

Shield connection
clamp

The shield connection clamp (a in Figure 1-37, 2) in the shield connector
can be used in various ways depending on the cross-section of the cable.
For thicker cables, the dip in the clamp must be turned away from the cable
(Figure 1-37, 2). For thinner cables, the dip in the clamp is turned towards
the cable (Figure 1-37, 6).

If you need to change the direction of the shield connection clamp, proceed
as shown in Figure 1-37:

• Open the shield connector housing (1).

• The shield connection is delivered with the clamp positioned for
connecting thicker cables (2).

• Remove the clamp (3), turn it to suit the cross-section of the cable (4),
then reinsert the clamp. (5)

• Figure 6 shows the position of the clamp for a thin cable.

�� �� ��

�� �"

" " � � � � � �

��

(

FL IL 24 BK-B UM E

1-66 654403

1.17 Connecting the Power Supply

To operate a station you must provide the supply voltage for the bus
coupler, logic of the modules, and the sensors and actuators.

The voltage supplies are connected using unshielded cables
(Section 1.16.1).

For the connector assignment of the supply voltage connections please
refer to the module-specific data sheets for power and segment
terminals.

Do not replace terminals while the power is connected.

Before removing or mounting a module, disconnect the power to the
entire station. Make sure the entire station is reassembled before
switching the power back on.

FL IL 24 BK-B-PAC

654403 1-67

1.17.1 Power Terminal Supply

Apart from supplying the I/O voltage at the Fieldbus coupler, it is also
possible to provide the voltage through a power terminal.

UM 24 V Main Circuit Supply

The main power is reintroduced at the power terminal.

US 24 V Segment Circuit Supply

The segment voltage can be supplied at the power terminal or generated
from the main power. Install a jumper or create a segment circuit using a
switch to tap the voltage US from the main circuit UM.

Electrical isolation You can create a new voltage range through the power terminal.

Voltage ranges Power terminals can be used to create substations with different voltage
areas. Depending on the power terminal, you can apply 24 V DC,
120 V AC or 230 V AC.

Use appropriate power terminals for different voltage ranges

To utilize different voltage ranges within a station, a new power terminal
must be used for each area.

Dangerous voltage

When the power terminal is removed, the metal contacts are freely
accessible. With 120 V or 230 V power terminals, it should be assumed
that dangerous voltage is present. You must disconnect power to the
station before removing a terminal.

If these instructions are not followed, there is a danger of damage
to health or even of a life-threatening injury.

FL IL 24 BK-B UM E

1-68 654403

1.17.2 Provision of the Segment Voltage Supply at
Power Terminals

You cannot provide voltage at the segment terminal.

A segment terminal can be used to create a new partial circuit (segment
circuit) within the main circuit. This segment circuit permits the separate
supply of power outputs and digital sensors and actuators.

You can use a jumper to tap the segment voltage from the main circuit. If
you use a switch, you can control the segment circuit externally.

You can create a protected segment circuit without additional wiring by
means of a segment terminal with a fuse.

1.17.3 Requirements Regarding the Voltage Supplies

1.18 Connecting Sensors and Actuators

Sensors and actuators are connected using connectors. Each module-
specific data sheet indicates the connector(s) to be used for that specific
module.

Connect the unshielded cable as described in Section 1.16.1 on page 1-61
and the shielded cable as described in Section 1.16.2 on page 1-63.

1.18.1 Connection Methods for Sensors and Actuators

Most of the digital I/O modules in the Inline product range permit the
connection of sensors and actuators in 2-, 3- and 4-wire technology.

Use power supply units with safe isolation

Only use power supplies that ensure safe isolation between the primary
and secondary circuits according to EN 50178.

For additional voltage supply requirements, please refer to the data
sheets for the segment and power terminals.

FL IL 24 BK-B-PAC

654403 1-69

Because of the different types of connectors, a single connector can
support the following connection methods:

– 2 sensors or actuators in 2-,3- or 4-wire technology

– 4 sensors or actuators in 2- or 3-wire technology

– 2 sensors or actuators in 2- or 3-wire technology with shielding
(for analog sensors or actuators)

When connecting analog devices please refer to the module-specific
data sheets, as the connection method for analog devices differs from
that for digital devices.

FL IL 24 BK-B UM E

1-70 654403

1.18.2 Examples of Connections for Digital I/O Modules

Various connection options are described below using 24 V DC modules
as an example. For the 120 V/230 V AC area, the data change accordingly.
A connection example is given in each module-specific data sheet.

X Used

– Not used

X Used

– Not used

Table 1-20 Overview of the connections used for digital input modules

Connection Representation
in the Figure

2-wire 3-wire 4-wire

Sensor signal IN IN X X X

Sensor supply US / UM US (+24 V) X X X

Ground GND GND (⊥) – X X

Ground/FE shielding FE () – – X

Table 1-21 Overview of the connections used for digital output modules

Connection Representation
in the Figure

2-wire 3-wire 4-wire

Actuator signal OUT OUT X X X

Actuator supply US US (+24 V) – – X

Ground GND GND (⊥) X X X

Ground/FE shielding FE () – X X

In the following figures US designates the supply voltage. Depending on
which potential jumper is accessed, the supply voltage is either the main
voltage UM or the segment voltage US.

FL IL 24 BK-B-PAC

654403 1-71

Different Connection Methods for Sensors and Actuators

2-wire technology

Figure 1-38 2-wire termination for digital devices

Sensor Figure 1-38, A shows the connection of a 2-wire sensor. The sensor signal
is carried to terminal point IN1. Sensor power is supplied from the voltage
US.

Actuator Figure 1-38, detail B, shows the connection of an actuator. The actuator
power is supplied through output OUT1. The load is switched directly by
the output.

" " � � � � � �

� � �

	 9

� � �

	 9

��

� � � �

0 � 1 0 � 1
��

�

$
�
�

�

�
�

�

The maximum current carrying capacity of the output must not be
exceeded (refer to the module-specific data sheet).

FL IL 24 BK-B UM E

1-72 654403

3-wire technology

Figure 1-39 3-wire termination for digital devices

Sensor Figure 1-39, A shows the connection of a 3-wire sensor. The sensor signal
is carried to terminal point IN1 (IN2). The sensor is supplied with power via
terminal points US and GND.

Actuator Figure 1-39, B shows the connection of a shielded actuator. The actuator
is supplied through output OUT1 (OUT2). The load is switched directly by
the output.

� � �

� � �

� � �

� � �

" " � � � � � �

��

	 9

	 9

� �

0 � 1

� �

0 � 1

0 � 1

0 � 1

��

�

$
�
�

�

��

�

$
�
�

�

�
�

�

�
�

�

The maximum current carrying capacity of the output must not be
exceeded (refer to the module-specific data sheet).

FL IL 24 BK-B-PAC

654403 1-73

4-wire technology

Figure 1-40 4-wire termination for digital devices

Sensor Figure 1-40, A shows the connection of a shielded 4-wire sensor. The
sensor signal is carried to terminal point IN1. The sensor is supplied with
power via terminal points US and GND. The sensor is grounded via the FE
terminal point.

Actuator Figure 1-40, B shows the connection of a shielded actuator. The provision
of the supply voltage US means that even actuators that require a separate
24 V supply can be connected directly to the terminal.

" " � � � � � �

� � �

	 9

� � �

	 9

��

� �

0 � 1

� �

0 � 1

��

�

$
�
�

�

�
�

�

$
�
�

�

The maximum current carrying capacity of the output must not be
exceeded (see the module-specific data sheet).

FL IL 24 BK-B UM E

1-74 654403

Section 2

654403 2-1

This section informs you about

– the startup

– the IP paramter assignment

– the management information base (MIB)

Startup/Operation ...2-3

2.1 Firmware Startup...2-3

2.1.1 Sending BootP Requests...2-3

2.2 Assigning an IP Address Using the Factory Manager.................2-3

2.2.1 BootP ...2-4

2.3 Manual Addition of Devices Using The Factory Manager2-4

2.4 Selecting IP Addresses ...2-5

2.4.1 Possible Address Combinations2-6

2.4.2 Subnet Masks ..2-7

2.4.3 Structure of the Subnet Mask ..2-8

2.5 Web-Based Management ...2-9

2.5.1 Calling Web-Based Management (WBM)2-9

2.5.2 Structure of the Web Pages...2-10

2.5.3 Layout of the Web Pages...2-11

2.5.4 Password Protection ..2-11

2.5.5 Process Data Access via XML.....................................2-12

2.6 Factory Line I/O Configurator..2-17

2.6.1 Factory Line I/O Browser ...2-17

2.6.2 OPC Configurator ..2-18

FL IL 24 BK-B-PAC UM E

2-2 654403

Startup/Operation

654403 2-3

2 Startup/Operation

2.1 Firmware Startup

After you power supplied your device, the firmware is started.

2.1.1 Sending BootP Requests

Initial Startup:

During initial startup, the device sends a BootP request without interruption
until it receives a valid IP address. The requests are transmitted at varying
intervals (2 s, 4 s, 8 s, 2 s, 4 s, etc.) so that the network is not loaded
unnecessarily. If valid IP parameters are received, they are saved as
configuration data by the device.

Further Startups:

If the device already has valid configuration data, it only sends three more
BootP requests on a restart. If it receives a BootP reply, the new
parameters are saved. If the device does not receive a reply, it starts with
the previous configuration.

2.2 Assigning an IP Address Using the Factory
Manager

There are two options available when assigning the IP address: reading the
MAC address via BootP or manually entering the MAC address in the Add
New Ethernet Device dialog box in the Factory Manager.

Alternatively, the IP address can be entered via any BootP server.

FL IL 24 BK-B-PAC UM E

2-4 654403

2.2.1 BootP

– Ensure that the network scanner and the BootP server have
been started.

– Connect the device to the network and the supply voltage.

– The BootP request for the new device triggered by the device restart/
reset appears in the Factory Manager message window. Select the
relevant message.

– Click with the right mouse button on the BootP message of the device.

– Enter the relevant data in the Add New Ethernet Device dialog box
(see Section 2.3).

– Save the configuration settings and restart the device (power up)..

2.3 Manual Addition of Devices Using The
Factory Manager

– Click on the "Add device" command or use the key combination
CTRL+A.

– Enter the desired data under "Description" and "TCP/IP Address".

– Activate the "BootP Parameter" by selecting "Reply on BootP
Requests".

– Enter the MAC address. It can be found on the sticker on the front of
the housing.

– Save the configuration settings and restart the device (power up).

The device now sends another BootP request and receives the specified
IP parameters from the BootP server.

If the device is being started for the first time, it is then automatically
booted with the specified configuration. If the device is not being started
for the first time, save the configuration and restart the device (power
up). The device now sends another BootP request and receives the
specified IP parameters from the BootP server.

Startup/Operation

654403 2-5

2.4 Selecting IP Addresses

The IP address is a 32-bit address, which consists of a network part and a
user part. The network part consists of the network class and the network
address.
There are currently five defined network classes; classes A, B, and C are
used in modern applications, while classes D and E are hardly ever used.
It is therefore usually sufficient if a network device only "recognizes"
classes A, B, and C.

With binary representation of the IP address the network class is
represented by the first bits. The key factor is the number of "ones" before
the first "zero". The assignment of classes is shown in the following table.
The empty cells in the table are not relevant to the network class and are
already used for the network address.

The bits for the network class are followed by those for the network address
and user address. Depending on the network class, a different number of
bits are available, both for the network address (network ID) and the user
address (host ID).

IP addresses can be represented in decimal, octal or hexadecimal
notation. In decimal notation, bytes are separated by dots (dotted decimal
notation) to show the logical grouping of the individual bytes.

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Class A 0

Class B 1 0

Class C 1 1 0

Class D 1 1 1 0

Class E 1 1 1 1 0

Network ID Host ID

Class A 7 bit 24 bit

Class B 14 bit 16 bit

Class C 21 bit 8 bit

Class D 28-bit multicast identifier

Class E 27 bit (reserved)

FL IL 24 BK-B-PAC UM E

2-6 654403

2.4.1 Possible Address Combinations

Figure 2-1 Structure of IP addresses

Special IP Addresses for Special Applications

Certain IP addresses are reserved for special functions. The following
addresses should not be used as standard IP addresses.

The decimal points do not divide the address into a network and a user
address. Only the value of the first bits (before the first "zero") specifies
the network class and the number of remaining bits in the address.

! � � 	 �
 � � � � 	 �

� � � � 	 �
 � � � � 	 �

� � � � 	 �
 " � � 	 �

� " � � 	 �

� ! � � 	 �

� � � # � � $ � � % & �
 � � � %

& �
 � � � %

& �
 � � � %

� � � # � � $ � � %

� � � # � � $ � � %

� ' � � � 	 (� � � (� � �) * � � 	 �
 � � + � � * , �

� �
 � � - � ' � (� � � (* � * � � � , , � 	 � � 	 � �

.

.

.

.

.

�

��

���

����

� �

 � �
. � . � . � . � � � � � ! � � � � � � � � � � � �

� �

 � �
� � " � . � . � . � � � � / � � � � � � � � � � � � �

� �

 � �
� / � � . � . � . � � � � � � � � � � � � � � � � � �

� �

 � %
� � � � . � . � . � � � � � / � � � � � � � � � � � �

� �

 � �
� � . � . � . � . � � � � � ! � � � � � � � � � � � �

Startup/Operation

654403 2-7

127.x.x.x Addresses

The class A network address "127" is reserved for a loop-back function on
all PCs, regardless of the network class. This loop-back function may only
be used on networked PCs for internal test purposes.

If a telegram is addressed to a PC with the value 127 in the first byte, the
receiver immediately sends the telegram back to the transmitter.

The correct installation and configuration of the TCP/IP software, for
example, can be checked in this way.

As the first and second layers of the ISO/OSI reference model are not
included in the test they should be tested separately using the ping
function.

Value 255 in the Byte

Value 255 is defined as a broadcast address. The telegram is sent to all the
PCs that are in the same part of the network. Examples: 004.255.255.255,
198.2.7.255 or 255.255.255.255 (all the PCs in all the networks). If the
network is divided into subnetworks, the subnet masks must be observed
during calculation, otherwise some devices may be omitted.

0.x.x.x Addresses

Value 0 is the ID of the specific network. If the IP address starts with a zero,
the receiver is in the same network. Example: 0.2.1.1 refers to device 2.1.1
in this network.

The zero previously signified the broadcast address. If older devices are
used, unauthorized broadcast and complete overload of the entire network
(broadcast storm) may occur when using the IP address 0.x.x.x.

2.4.2 Subnet Masks

Routers and gateways divide large networks into several subnetworks. The
IP addresses for individual devices are assigned to specific subnetworks
by the subnet mask. The network part of an IP address is not modified by
the subnet mask. An extended IP address is generated from the user
address and subnet mask. Because the masked subnetwork is only
recognized by the local PC, all the other devices display this extended IP
address as a standard IP address.

FL IL 24 BK-B-PAC UM E

2-8 654403

2.4.3 Structure of the Subnet Mask

The subnet mask always contains the same number of bits as an IP
address. The subnet mask has the same number of bits (in the same
position) set to "one", which is reflected in the IP address for the network
class.

Example: An IP address from class A contains a 1-byte network address
and a 3-byte PC address. Therefore, the first byte of the subnet mask may
only contain "ones".

The remaining bits (three bytes) then contain the address of the
subnetwork and the PC. The extended IP address is created when the bits
of the IP address and the bits of the subnet mask are ANDed. Because the
subnetwork is only recognized by local devices, the corresponding IP
address appears as a "normal" IP address to all the other devices.

Application

If the ANDing of the address bits gives the local network address and the
local subnetwork address, the device is located in the local network. If the
ANDing gives a different result, the data telegram is sent to the subnetwork
router.

Example for a class B subnet mask:

Using this subnet mask, the TCP/IP protocol software differentiates
between the devices that are connected to the local subnetwork and the
devices that are located in other subnetworks.

Example: Device 1 wants to establish a connection with device 2 using the
above subnet mask. Device 2 has IP address 59.EA.55.32.

IP address display for device 2:

� " " � � " " � � # � � �

� � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � �

1 ' 3 . , ()
 % � & (& . � %

� . % (� :
 % � & (& . � % �

� + 8 % ' &
 , (2 7
 8 . & 2
�) (2 2
 �

" # � 9 � � " " � � �

� � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � �

E ' C (� ' 3 . , ()
 % � & (& . � %

� . % (� :
 % � & (& . � %

Startup/Operation

654403 2-9

The individual subnet mask and the IP address for device 2 are then
ANDed bit-by-bit by the software to determine whether device 2 is located
in the local subnetwork.

ANDing the subnet mask and IP address for device 2:

After ANDing, the software determines that the relevant subnetwork (01)
does not correspond to the local subnetwork (11) and the data telegram is
forwarded to a subnetwork router.

2.5 Web-Based Management

The FL IL 24 BK-B-PAC has a web server, which generates the required
pages for web-based management and, depending on the requirements of
the user, sends them to the "Factory Manager" or a standard web browser.
Web-based management can be used to access static information (e.g.,
technical data, MAC address) or dynamic information (e.g., IP address,
status information) or to change the configuration (password-protected).

2.5.1 Calling Web-Based Management (WBM)

The FL IL 24 BK-PAC web server can be addressed using the IP address
if configured correspondingly.
The bus terminal homepage is accessed by entering the
URL "http://ip-address".

Example: http://192.168.2.81

� � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � �

� � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � �

� � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �
 � � � �

� + 8 % ' &
 , (2 7 �

� �
 (� � � ' 2 2 �

� ' 2 +) &
 (5 & ' �
 � � 1 . % 4 �

� � 1

� + 8 % ' & ; � � 7

FL IL 24 BK-B-PAC UM E

2-10 654403

Figure 2-2 WBM homepage

2.5.2 Structure of the Web Pages

The Ethernet bus terminal pages are divided into two, with the selection
menu and the relevant submenus on the left-hand side, and the
corresponding information displayed on the right-hand side. Static and
dynamic information about the bus terminal can be found in the following
menus.

Startup/Operation

654403 2-11

2.5.3 Layout of the Web Pages

2.5.4 Password Protection

The bus terminal is protected by two passwords (case-sensitive). The
password for read access is "public", while the password for read and write
access is "private". All status changes to the bus terminal are only possible
after the password for read and write access has been entered. The
password can be changed at any time. Your unique password must be
between four and twelve characters long.

0 � � � � � � � �
 � � * � � 	 � �

% � - 	 � � � � � (� �) � 	 � �

% � - 	 � � � � � � (+ * � � 	 � �

� % 5 � � , (& . � %

0 ' % ' � ()
 ' 3 / % . 3 ()
 1 (& (
E (� � ; (� '
 � % 2 & ()) (& . � %
� � 3 ()
 1 . (4 % � 2 & . 3 2

� �
 � � % 5 . 4 + � (& . � %
� � � �
 � � % 5 . 4 + � (& . � %
� / (% 4 '
 � (2 2 ; � � �
A (& 3 / � � 4
 > E (� � ; (� ' @

� � " " � � �

� � � 	 � � � � � � 	 � �

� ' � F . 3 ' 2
� � � 3 ' 2 2
 1 (& (
 � � % . & � � . % 4
 > � � � 3 ' 2 2
 1 (& (
 A (& 3 / � � 4 @
� ' , � & '
 1 . (4 % � 2 & . 3 2
� + 2
 � � % 5 . 4 + � (& . � %
9 F ' % &
 (8) '

1 � � � � � � � � � 2 � � � � � �

& �) �

FL IL 24 BK-B-PAC UM E

2-12 654403

2.5.5 Process Data Access via XML

The integrated web server of the FL IL 24 BK-B-PAC offers the possibility
to access the process data of the connected Inline terminals via a website
in XML format.

You can access the websites via a standard web browser. For calling the
XML pages with the process data in the address line of the browser, enter
the address in the following format: „http:// <IP-Adresse>/
processdata.xml“.

2.5.5.1 XML File Structure

The XML file contains different data areas:

IL_STATION Frames for the entire XML file. The obligatory elements of this frame are
IL_BUS_TERMINAL and IL_BUS.

IL_BUS_TERMINAL This data area contains information on the entire Inline station (bus coupler
and all connected terminals). Belonging to this data area:
TERMINAL_TYPE, the module name NAME, the IP address
IP_ADDRESS, the number of connected terminals MODULE_NUMBER
and the INTERBUS diagnostic-register
DIAGNOSTIC_STATUS_REGISTER and the INTERBUS status register
DIAGNOSTIC_PARAMETER_REGISTER.

TERMINAL_TYPE This area contains the module, it is always
FL IL 24 BK-B-PAC.

NAME Contains the user-specific station names. The station name can be
modified via WBM.

IP_ADDRESS Contains the IP address of the station.

MODULE_NUMBER Contains the number of connected Inline terminals. In the case of a bus
error, the number of the last known operable configuration is indicated.

If you forget the password, the device can be re-enabled by Phoenix
Contact. Ensure you have the exact device designation and serial
number ready when you contact the telephone number indicated on the
last page.

Startup/Operation

654403 2-13

DIAGNOSTIC_STATUS
_REGISTER

Contains the INTERBUS status, represented via all bits of the diagnostic
status register. A detailed description can be found in the diagnostic
parameter register. Whenever an error bit was set, the diagnostic
parameter register was rewritten.

IL_BUS Frame for the connected Inline terminals.

IL_MODULE Frame for the data of an individual Inline terminal. The terminals are
numbered from one up to 63.

MODULE_TYPE Contains the terminal type. Possible types are DI, DO, DIO, AI, AO, and
AIO.

PD_CHANNELS Number of process data channels in an Inline terminal. For digital terminals
the number of channels is equal to the number of supported bits. For other
modules, the number of process data words is indicated. Example: An
AO 2 has two process data channels and a DO 8 has 8 bits and 8 process
data channels.

PD_WORDS Number of process data words in an Inline terminal. Observe that analog
terminals always have the same number of output and input words. An
AO 2 also has two input channels and an AI 2 also has tow output
channels.

PD_IN This area is used by all terminals that occupy input data. The number of
process data words depends on the terminal type.

Example:

a) Inline terminal with two active inputs

<IL_MODULE number="1">
<MODULE_TYPE>DI</MODULE_TYPE>
<PD_CHANNELS>2</PD_CHANNELS>
<PD_WORDS>1</PD_WORDS>
<PD_IN word="1">3</PD_IN>

</IL_MODULE>

b) Inline terminal with two digital inputs and only the second input is active.

<IL_MODULE number="3">
<MODULE_TYPE>DI</MODULE_TYPE>
<PD_CHANNELS>2</PD_CHANNELS>

FL IL 24 BK-B-PAC UM E

2-14 654403

<PD_WORDS>1</PD_WORDS>
<PD_IN word="1">2</PD_IN>

</IL_MODULE>

c) Inline terminal with 16 digital inputs and the 13th and the 14th input is
active.

<IL_MODULE number="7">
<MODULE_TYPE>DI</MODULE_TYPE>
<PD_CHANNELS>16</PD_CHANNELS>
<PD_WORDS>1</PD_WORDS>
<PD_IN word="1">12288</PD_IN>

</IL_MODULE>

The input word returns the value 12288 (212 + 213).

d) Inline terminal with two analog inputs, only the first channel being active
(14970).

<IL_MODULE number="10">
<MODULE_TYPE>AI</MODULE_TYPE>
<PD_CHANNELS>2</PD_CHANNELS>
<PD_WORDS>2</PD_WORDS>
<PD_IN word="1">14970</PD_IN>
<PD_IN word="2">8</PD_IN>
<PD_OUT word="1">0</PD_OUT>
<PD_OUT word="2">0</PD_OUT>

</IL_MODULE>

PD_OUT This area is used by all terminals with output data. The use of bits is
identical with the use of "PD_IN“.

2.5.5.2 Validity of Documentation

The validity of data is identical with the validity via DDI or OPC access.

2.5.5.3 Error in an Inline Station

If the FL IL 24 BK-B-PAC does not configure the connected Inline terminals
correctly, the process data are listed in the XML file as follows.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE IL_STATION SYSTEM "processdata.dtd">
<IL_STATION>

<IL_BUS_TERMINAL>
<TERMINAL_TYPE>FL IL 24 BK-B-PAC</TERMINAL_TYPE>

Startup/Operation

654403 2-15

<NAME>FL IL 24 BK-B-PAC</NAME>
<IP_ADDRESS>172.16.27.37</IP_ADDRESS>
<MODULE_NUMBER>0</MODULE_NUMBER>
<DIAGNOSTIC_STATUS_REGISTER>132
</DIAGNOSTIC_STATUS_REGISTER>

<DIAGNOSTIC_PARAMETER_REGISTER>65535</
DIAGNOSTIC_PARAMETER_REGISTER>

</IL_BUS_TERMINAL>
<IL_BUS>
</IL_BUS>

</IL_STATION>

The values of the diagnostic status and the diagnostic parameter register
indicate the error cause. The number of connected terminals is "Zero", thus
the area "IL_BUS" is empty.

In the event of a bus error, the process data are invalid because only
internal values are indicated, however, not the values on the INTERBUS.
The status is indicated in the diagnostic register.

In order to make sure that only valid data are displayed, the diagnostic
register also must be requested. The same is valid in the event of a faulty
configuration. In this case, the INTERBUS does not run and only internal
values can be read in the XML file.

If an I/O error occurs, all data are valid, except for the data of the faulty
terminal.

FL IL 24 BK-B-PAC UM E

2-16 654403

Figure 2-3 Screen for XML data

Startup/Operation

654403 2-17

2.6 Factory Line I/O Configurator

The Factory Line I/O configurator is a software package for the easy
configuration , startup and diagnostics of Factory Line Ethernet bus
terminals. In particular, process data exchange is supported via OPC in an
easy-to-use manner.

You will find the software on the "CD FL IL 24 BK“ CD, Order No.:
28 32 06 9. The I/O configurator is divided into two parts: I/O browser and
OPC configurator.

2.6.1 Factory Line I/O Browser

The bus structure is created using the I/O Browser. Out of all supported
modules, select those that you want to use in your station (offline
configuration) or that you are using at the moment (online configuration).
With regard to the online configuration, you have the possibility to read in
an existing bus structure and to test it.

Configuration

During system planning the I/O configurator offers an integrated online
product catalog to help ensure optimal startup. You have access to all
supported Inline terminals, which can be integrated into the Inline local bus
by using drag and drop. In the following I/O browser window, the bus
structure is displayed on the left and the product catalog on the right.

Startup

After installing the hardware you can start up the stations based on the
configured data.

Diagnostics

You can test the operating status of the stations at any time and also
receive comprehensive support on correcting any errors with the help of
the integrated INTERBUS technology.

FL IL 24 BK-B-PAC UM E

2-18 654403

Inline station structure with I/O configurator

Figure 2-4 I/O browser screen

2.6.2 OPC Configurator

OPC Data Exchange

Process data exchange via OPC is supported in an very easy-to-use
manner. Use the OPC Configurator to assign OPC items to the Inline
station structure for the respective terminal points. With the OPC
Configurator, you can configure the INTERBUS OPC Server from Phoenix
Contact (Designation IBS OPC SERVER, Order No. 27 29 12 7) for this
bus terminal type. The project file and an OPC server provide the
application program or the visualization with direct access to the process
data for the bus configuration.

Startup/Operation

654403 2-19

Linking Items and Physical Terminal Points

An item can be created for each physical I/O terminal in your bus
configuration and the entire configuration can be stored in a project file.
The project file and an OPC server provide the application program or the
visualization with direct access to the process data for the bus
configuration.

Figure 2-5 Linking items and terminal points

The entire configuration can be carried out offline.

FL IL 24 BK-B-PAC UM E

2-20 654403

Startup

After the hardware has been installed, the bus configuration can either be
configured online or started up using the project file.

Diagnostics

The operating state of the Inline station can be checked at any time. The
comprehensive diagnostic functions provide support when removing errors
from the local bus (configuration).

OPC Communication

Configure the OPC server from Phoenix Contact for this type of bus
terminal using the project file that was created using this software. The
project file and an OPC server provide the application program or the
visualization with direct access to the process data for the bus
configuration.

Section 3

654403 3-1

This section informs you about

– the driver software

– the example program

Driver Software ...3-3

3.1 Documentation ..3-3

3.1.1 Hardware and Software User Manual............................3-3

3.2 The Software Structure ...3-3

3.2.1 Ethernet / Inline Bus Terminal Firmware........................3-4

3.2.2 Driver Software ..3-4

3.3 Support and Driver Update ...3-5

3.4 Transfer of I/O Data ..3-7

3.4.1 Position of the Process Data (Example)3-8

3.5 Startup Behavior of the Bus Terminal ...3-9

3.5.1 Plug & Play Mode ..3-9

3.5.2 Expert Mode...3-10

3.5.3 Possible Combination of Modes3-10

3.5.4 Startup Diagrams of the Bus Coupler3-11

3.5.5 Changing and Starting a Configuration in P&P Mode..3-13

3.6 Changing a Reference Configuration Using the Software3-14

3.6.1 Effects of Expert Mode...3-14

3.6.2 Changing a Reference Configuration...........................3-14

3.7 Description of the Device Driver Interface (DDI)3-16

3.7.1 Introduction ..3-16

3.7.2 Overview..3-17

3.7.3 Working Method of the Device Driver Interface3-17

3.7.4 Description of the Functions of the
Device Driver Interface ..3-20

FL IL 24 BK-B-PAC UM E

3-2 654403

3.8 Monitoring Function...3-37

3.8.1 Process Data Monitoring /
Process Data Watchdog ..3-39

3.8.2 Connection Monitoring (Host Checking)3-41

3.8.3 Data Interface (DTI) Monitoring3-44

3.8.4 I/O Fault Response Mode..3-48

3.8.5 Handling the NetFail Signal /
Testing With ETH_SetNetFail3-50

3.9 IN Process Data Monitoring ..3-58

3.10 Notification Mode ..3-62

3.11 Programming Support Macros ..3-65

3.11.1 Introduction ..3-65

3.12 Description of the Macros ...3-67

3.12.1 Macros for Converting the Data Block of a Command.3-68

3.12.2 Macros for Converting the Data Block of a Message...3-71

3.12.3 Macros for Converting Input Data3-74

3.12.4 Macros for Converting Output Data3-75

3.13 Diagnostic Options of the Driver Software3-78

3.13.1 Introduction ..3-78

3.14 Positive Messages ..3-79

3.15 Error Messages...3-80

3.15.1 General Error Messages..3-80

3.15.2 Error Messages When Opening a Data Channel.........3-82

3.15.3 Error Messages When Transmitting
Messages/Commands ...3-83

3.15.4 Error Messages When Transmitting Process Data......3-85

3.16 Example Program ...3-88

3.16.1 Demo Structure Startup ...3-88

3.16.2 Example Program Source Code3-90

Driver Software

654403 3-3

3 Driver Software

3.1 Documentation

3.1.1 Hardware and Software User Manual

This Hardware and Software User Manual for FL IL 24 BK-B-PAC
(Order No. 26 98 65 6) describes the hardware and software functions in
association with an Ethernet network and the functions of the Device Driver
Interface (DDI) software.

All figures, tables, and abbreviations are listed in the appendices. The
index in the appendix makes it easier to search for specific key terms and
descriptions.

3.2 The Software Structure

Figure 3-1 Software structure

� � � � � � � � � � � � � � � � 	
 � � � �

�
�
�
�
�
�
�
3
�
4
�

�

4

�

2

�

3

�

3 � � 5 � �

% � - 	 � �
� � � � % � 	 - � �
� � � � � � � � � � � � � (� �

3 � � 5 � �

� � 6 � � � � �

�

4

�

2

�

3

�

� � 6 � � � � � � ' , � � �

� � * , � 	 � +

) �) � � 7

� �

8 � 8

� � �

)
 � � �

1 	 �) # � �

% � 	 - � � �
 � (� # � �

� � " � � � � �

� 1

� �

FL IL 24 BK-B-PAC UM E

3-4 654403

3.2.1 Ethernet / Inline Bus Terminal Firmware

The Ethernet / Inline bus terminal firmware controls the Inline functions and
Ethernet communication, shown on the right-hand side in Figure 3-1.

The bus terminal provides a basic interface for using services via the
Ethernet network. The software primarily encodes and decodes the data
telegrams for addressing the bus terminal services. The firmware also
ensures the network-specific addressing of the bus terminal in the network,
i.e., the management of IP parameters.

3.2.2 Driver Software

The driver software (DDI) enables the creation of an application program,
shown on the left-hand side in Figure 3-1. A library is available for Sun
Solaris 2.4. Due to the large variety of different operating systems, the
driver software is available as source code in the IBS ETH DDI SWD E
(Order No. 27 51 13 7).

The driver software can be divided into three groups. The Device Driver
Interface functions form the first group, which controls the bus terminal via
the Ethernet network. Using these functions, firmware services can be
called and started, and results can be requested on the bus terminal. The
second group contains functions for monitoring the bus terminal and the
workstation with the application program. The third group contains macro
functions for the conversion of data between Intel and Motorola data
format.
Figure 3-2 illustrates the creation of an application program from the parts
of the driver software.

Driver Software

654403 3-5

Figure 3-2 Using the driver software in the application program

3.3 Support and Driver Update

In the event of problems, please phone our 24-hour hotline on
+49 - 52 35 - 34 18 88.

Driver updates and additional information are available on the Internet at
http://www.phoenixcontact.com.

� , , � 	 � � 	 � � � , � � + �)

� � * � � �

� 9 � � * � 	 � �

8 � � �

� 	 � � � 7 � # 	 � 6

% % � � � ' � � 3 & �

(* � � � 	 � �

� � � � � � � � � � � � � � '
 � � � � � � �

% � � � � � � � � � 	 � �

� � � $
 � � 	 � �
 � � � � � � �

" � � " � � � �

FL IL 24 BK-B-PAC UM E

3-6 654403

Training Courses

Our bus terminal training courses enable you to take advantage of the full
capabilities of the connected Inline system. For details and dates, please
see our seminar brochure, which your local Phoenix Contact
representative will be happy to mail to you.

Driver Software

654403 3-7

3.4 Transfer of I/O Data

The I/O data of individual Inline modules is transferred via memory areas
organized in a word-oriented way (separate memory areas for input and
output data). The Inline modules use the memory according to their
process data width. User data is stored in word arrays in the order of the
connected modules. The assignment of the individual bits is shown in the
following diagram:

Figure 3-3 Position of the user data for individual devices in the
word array

To achieve cycle consistency between input/output data and the station
bus cycle, the bus terminal uses an exchange buffer mechanism. This
mechanism ensures that the required I/O data is available at the correct
time and is protected during writing/reading by appropriate measures.
The following diagram shows the position of the user data for several
devices in the word array.

Figure 3-4 Position of the user data for several devices in the word array

� . &
 � " � . &
 �

� � " " � � � �

�
 ; � � � 2

�
 ; � � �

�
 8 : & '

�
 8 . & 2

�
 8 . & 2

� � " " � � � �

�

� : & '
 � ' F . 3 '

� " �

� � 8 . &
 � ' F . 3 '

� " �

� � 8 . &
 � ' F . 3 '

� "

FL IL 24 BK-B-PAC UM E

3-8 654403

3.4.1 Position of the Process Data (Example)

The physical assignment of the devices to the bus terminal determines the
order of the process data in the memory. The following diagram illustrates
an example bus configuration and the position of the relevant process data.

Figure 3-5 Position of the process data according to the physical
bus configuration

� 2 % 4 " % 4 � % 4 � � % 4 � % 4 � � % 4 �

1 � � � � � � � � � 2 � � % 	 + 	 � � � � * � , * � �) � ' * � �

� � � 	 � � � � � � � � � *
� � 6 � � � � �

�� "

C
 C
 C
 C
 C
 C
 C
 C

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

 C
 C
 C
 C

 C
 C

 C

� � � ' � �

� � � ' � !

� � � ' � �

� � � ' � �

� � � ' � �

� � � ' � �

� � � ' � �

� " � � � � � �

Driver Software

654403 3-9

3.5 Startup Behavior of the Bus Terminal

The startup behavior of the bus coupler is specified via two system
parameters, the Plug & Play mode and the expert mode. In the delivery
state, the P&P mode is activated and the export mode is deactivated.

3.5.1 Plug & Play Mode

P&P mode activated The FL IL 24 BK-B-PAC supports the socalled Plug & Play mode (P&P).
This mode enables Inline modules connected in the field to be started up
using the FL IL 24 BK-B-PAC bus coupler without a higher-level computer.
The P&P status (active or inactive) is stored retentively on the bus coupler.
In P&P mode, the connected Inline terminals are detected and their
function is checked. If this physical configuration is ready for operation it is
stored retentively as reference configuration on the bus coupler.
The P&P mode needs to be deactivated again so that the reference
configuration will not be overwritten once again during the next startup of
the bus coupler. At the same time, the deactivation of the P&P mode also
is the acknowledgment for the reference configuration and the release of
the process data exchange.

P&P mode
deactivated

When the P&P mode is deactivated, the reference configuration is
compared to the physical configuration. If these two configurations are
identical, the bus coupler can be set to the "RUN" state.

If the reference configuration and the physical configuration are not
identical, the FAIL LED flashes and the process data exchange is not
possible for safety reasons.

In order to operate the bus you have the following two options:
1. Restore the original configuration so that the reference configuration

and the physical configuration are identical once more or
2. activate the P&P mode so that the current physical configuration can

be accepted as reference configuration.

Please observe that the following description is valid for the deactivated
expert mode. Possible combinations of both modes and their behavior
are described in on page 3-10.

FL IL 24 BK-B-PAC UM E

3-10 654403

3.5.2 Expert Mode

Expert mode
deactivated

If the expert mode is deactivated (default upon delivery) so an error-free
configuration is automatically set to the "RUN" state. If the configuration
has a technical defect or if it is not identical with the reference configuration,
the FAIL LED flashes and the process data exchange is not possible.

Expert mode
activated

If the expert mode is activated, the faulty configuration is set to the
"READY" state but not automatically to the "RUN" state. The user must set
the station to the "RUN" state using the appropriate firmware commands
such as ACTIVATE_CONFIGURATION, 0x0711 or
START_DATA_TRANSFER, 0x0701.

3.5.3 Possible Combination of Modes

Please observe that the following description is valid for the deactivated
P&P mode. Possible combinations of both modes and their behavior are
described in on page 3-10.

Table 3-1 Possible combination of modes and their effects

P&P
Mode

Expert
Mode

Description/Effect Diagram

Deactive Deactive Standard situation - The station sets valid configurations to
the "RUN" state since the current configuration is identical
with the memory. Process data exchange is possible.

Figure 3-6
on

page 3-11

Deactive Active A valid configuration is set to the "READY" state. A process
data exchage is only possible if the station has been set to
the "RUN" state using the firmware command.

Figure 3-7
on

page 3-11

Active Deactive The connected configuration is stored as reference
configuration and the station is set to the "RUN" state.
Process data exchange is not possible.

Figure 3-8
on

page 3-12

Active Active A physical configuration is stored as reference
configuration and is set to the "Ready" state. A process
data exchage is only possible if the P&P mode is
deactivated and the station has been set to the "RUN" state
using firmware commands.

Figure 3-9
on

page 3-12

Driver Software

654403 3-11

3.5.4 Startup Diagrams of the Bus Coupler

"Standard" mode / P&P and expert mode deactivated

Figure 3-6 "Standard" mode / expert and P&P mode deactivatetd

P&P mode deactivated - expert mode activated

Figure 3-7 P&P mode deactivated - expert mode activated

� - ' � (8) '

3 � % 5 . 4 + � (& . � % G

� � ; ' �
 � -

� ' (�
 3 � % % ' 3 & ' �
3 � % 5 . 4 + � (& . � %

� �

� � � " � � � "

� � % 5 . 4 + � (& . � %
 H
� ' 5 ' � ' % 3 '
 3 � % 5 . 4 + � (& . � % G

� � ; ' �
 � -� ' &
 2 & (& . � %
 & �

? � � � ?
 2 & (& '

� �

< ' 2

< ' 2

� & (& . � %
 . %
? � � � ?
 2 & (& '

	 (.) �
 � 	 	
 !
 � � �
 � �

� � � ,
	 (.) �
 � �
 !
 � � �
 � 	 	

� � ; ' �
 � -� (F '
 (2
 � ' 5 ' � ' % 3 '
3 � % 5 . 4 + � (& . � %

� � ; ' �
 � -

� ' (�
� ' 5 ' � ' % 3 '
 3 � % 5 . 4 + � (& . � %

� � " � � � � �

� & (& . � %
 . %
? � 9 � 1 < ?
 2 & (& '
1 . 2 -) (: �
 ? �
 � ?

FL IL 24 BK-B-PAC UM E

3-12 654403

P&P mode activated - expert mode activated

Figure 3-8 P&P mode activated - expert mode deactivated

P&P mode activated - expert mode deactivated

Figure 3-9 P&P mode activated - expert mode activated

� - ' � (8) '
3 � % 5 . 4 + � (& . � % G

� � ; ' �
 � -

� ' (�
3 � % % ' 3 & ' �
 3 � % 5 . 4 + � (& . � %

� �

� � " � � � � �

� � % 5 . 4 + � (& . � %
 H
� ' 5 ' � ' % 3 '
 3 � % 5 . 4 + � (& . � % G

� � ; ' �
 � -� ' &
 2 & (& . � %
 & �

? � � � ?
 2 & (& '

� & (& . � %
 . %
? � � � ?
 2 & (& '

	 (.) �
 � 	 	
 !
 � � �
 � 	 	

� � � ,
	 (.) �
 � �
 !
 � � �
 � 	 	

� �

< ' 2

< ' 2

� � ; ' �
 � -

� ' (�
 3 � % % ' 3 & ' �
3 � % 5 . 4 + � (& . � %

� � " � � � � �

� - ' � (8) '
3 � % 5 . 4 + � (& . � % G

� � ; ' �
 � -� (F '
 � ' & ' % & . F ') :

(2

� ' 5 ' � ' % 3 '
 3 � % 5 . 4 + � (& . � %

� �

< ' 2

� & (& . � %
 . %

 ? � 9 � 1 < ?
 2 & (& '

	 (.) �
 � 	 	
 !
 � � �
 � �

� � � ,
	 (.) �
 � �
 !
 � � �
 � 	 	

Driver Software

654403 3-13

3.5.5 Changing and Starting a Configuration in P&P Mode

The following steps must be carried out when changing an existing
configuration:
– Switch the power supply off.
– Change the configuration.
– Switch the power supply on.

A configuration is started as shown in the flowchart (see Figure 3-6 up to
Figure 3-9). During startup, please observe the following:
– Once the coupler has been switched on, the previously found

configuration is read and started, as long as no errors are present. In
addition, the active configuration is saved in the EEPROM as the
reference configuration.

– All connected Inline devices are integrated in the active configuration if
the "DIAG" LEDs are continuously lit on all modules.

– To prevent the accidental use of the wrong configuration, process data
can only be accessed when P&P mode has been deactivated.

Ensure that Plug & Play mode is activated and expert mode is
deactivated.

When P&P mode is active, access to process data is rejected with the
error message 00A9hex (ERR_PLUG_PLAY). The outputs of the entire
Inline station are reset in P&P mode.
P&P mode is activated either using the I/O Browser, or the "Set_Value"
command via Ethernet. Once P&P mode has been switched off, the bus
is only disconnected if the existing configuration and the reference
configuration are the same. In addition, the existing configuration will no
longer be saved automatically as the reference configuration after a bus
terminal restart.

FL IL 24 BK-B-PAC UM E

3-14 654403

3.6 Changing a Reference Configuration Using
the Software

3.6.1 Effects of Expert Mode

If expert mode (object 2275hex) is activated, automatic startup of the
connected local bus is prevented.

The user must manually place the bus in RUN state by activating the
configuration (Activate_Configuration/0711hex object or
Create_Configuration/0710hex object) and by starting the local bus
(Start_Data_Transfer/0701hex object).

In expert mode, the bus terminal behaves in the same way as the gateways
(IBS SC/I-T or IBS 24 ETH DSC/I-T).

3.6.2 Changing a Reference Configuration

– Deactivate P&P mode.
– Activate expert mode (for access to all firmware commands).
– Place the bus in "Active" or "Stop" state (e.g., using the "Alarm_Stop"

command).
– The reference configuration can be downloaded or deleted.
– The connected bus can be read using the "Create_Configuration"

command and it can be saved as the reference configuration, as long
as the bus can be operated.

– The bus is started using the "Start_Data_Transfer" command. If access
to process data is rejected via an error message, this means that no
reference configuration is present.

Only switch to expert mode if you want to deactivate automatic
configuration and activate manual configuration using the firmware
commands.

Driver Software

654403 3-15

System parameters for the "Set_Value" service. (750hex)

Variable ID System parameters Value/Comment

2216hex Up-to-date PD cycle time Read only

2240hex Plug & play mode 0: Plug & Play mode inactive

1: Plug & Play mode active

2275hex Expert mode 0: Expert modus deactivated (default)

1: Expert mode active

2277hex Fault response mode 1: Reset fault mode (default)

2: Hold Last State

0: Standard Fault Mode

2293hex Process data monitoring timeout 0: Process data watchdog deactivated
200 - 65000: Timeout value

The P&P mode is only activated after the reboot.

FL IL 24 BK-B-PAC UM E

3-16 654403

3.7 Description of the Device Driver Interface
(DDI)

3.7.1 Introduction

The Device Driver Interface (DDI) is provided for using the bus terminal
services. The functions of the DDI are combined in a library, which must be
linked.

Driver Software

654403 3-17

3.7.2 Overview

3.7.3 Working Method of the Device Driver Interface

Remote procedure
call

The entire Device Driver Interface (DDI) for the bus terminal operates as
remote procedure calls. It does not use the standard libraries due to time
constraints. A remote procedure call means that the relevant function is not
executed on the local computer or the local user workstation (client), but on
another computer in the network. In this case, this is the bus terminal for
Ethernet. The user does not notice anything different about this working
method except that it is faster. The sequence of a remote procedure call is
shown in Figure 3-10.

Table 3-2 Overview of the functions in the DDI

Functions page

DDI_DevOpenNode 3-20

DDI_DevCloseNode 3-22

DDI_DTI_ReadData 3-24

DDI_DTI_WriteData 3-26

DDI_DTI_ReadWriteData 3-28

DDI_MXI_SndMessage 3-30

DDI_MXI_RcvMessage 3-32

GetIBSDiagnostic 3-34

ETH_SetHostChecking 3-40

ETH_ClearHostChecking 3-42

ETH_SetDTITimeoutCtrl 3-44

ETH_ClearDTITimeoutCtrl 3-45

ETH_SetNetFail 3-49

ETH_GetNetFailStatus 3-49

ETH_ClrNetFailStatus 3-52

DDI_SetMsgNotification 3-56

DDI_ClrMsgNotification 3-56

ETH_ActivatePDInMonitoring 3-57

ETH_DeactivatePDInMonitoring 3-60

ETH_SetNetFailMode 3-53

ETH_GetFailMode 3-55

FL IL 24 BK-B-PAC UM E

3-18 654403

Editing data
telegrams

When a function is called, the transfer parameters for the DDI function and
an ID for the function to be executed are copied into a data telegram
(network telegram) on the client and sent to the host (bus terminal) via the
Ethernet network (TCP/IP). The host decodes the received data telegram,
accepts the parameters for the function, and calls the function using these
parameters. The DDI_DTI_ReadData(nodeHd, dtiAcc) function is called as
an example in Figure 3-10.

During function execution by the server (bus terminal), the thread (process)
is in sleep state on the client until a reply is received from the server.

Once the function has been executed on the server, the read data and the
return value for the function are copied into a data telegram on the host and
sent back to the client (user workstation). The workstation decodes this
data telegram and makes the return value of the function available to the
user.

This working method is the same for each DDI function, which is executed
on the server as a remote procedure call.

Driver Software

654403 3-19

Remote Procedure Call Process

Figure 3-10 Execution of a remote procedure call

" � � " � � � �

� � � � � � �) , * � � � � : # � � $
 � � 	 � � ; � � 6 � � � � � � : 3 � � 5 � � ; � � � � � 3 & � � � � � � � � � � � � � � � '

� � � � � � � � � � � � � � 	 �
 � � � � � � � � 	 � � � � �
�

� � � � � � � �

1 (& (
 & ') ' 4 � (,

1 (& (
 & ') ' 4 � (,

� � � � � � � � � � � � � � 	 �
 � � � � � � � � 	 � � � � �
�

� � � � � � � � � � � � � � �
� 	 � � � �
 � � 	 � �

�

 � � � � � �

� � � � � � � � 	 � � � �
 � � 	 � �

�

FL IL 24 BK-B-PAC UM E

3-20 654403

3.7.4 Description of the Functions of the
Device Driver Interface

DDI_DevOpenNode

UNIX

Task: In order for the Device Driver Interface (DDI) to be able to find and address
the desired bus terminal in the Ethernet network using the device name, a
file called ibsetha must be created. This file contains the assignment
between the device name and the IP address or the server name of the bus
terminal.

The structure of the file and its entries is as follows:
192.168.5.76 IBETH01N1_M IBETH01N1_D

etha2 IBETH02N1_M IBETH02N1_D

Several device names can be assigned to a single IP address or server
name. The individual device names are separated by spaces. The address
of the bus terminal can be entered in "dotted notation": 192.168.5.76 or
as server name: etha2, is of no importance. If a device name is used
several times, only the first occurrence in the file is evaluated.

Windows NT/2000

The following entries should be created in the registry so that the Device
Driver Interface (DDI) can find the selected bus terminal. The driver creates
the entries for you. You will find the driver in the download area of
www.phoenixcontact.com or on the"CD FL IL 24 BK" CD, Order No.: 28 32
06 9.

The following registry entry is created:
[HKEY_LOCAL_MACHINE\SOFTWARE\Phoenix
Contact\IBSETH\Parameters\1]
ConnectTimeout=08,00,00,00
DeviceNames=IBETH01N1_M IBETH01N0_M@01 IBETH01N1_D
IBETH01N0_D IBETH01N1_M@00 IBETH01N1_M@05
InUse=YES
ReceiveTimeout=08,00,00,00
IPAddress=192.168.36.205

Another name cannot be used for the file.

Driver Software

654403 3-21

Function: The DDI_DevOpenNode function opens a data channel to the bus terminal
specified by the device name or to a node.

The function receives the device name, the desired access rights, and a
pointer to a variable for the node handle as arguments. If the function was
executed successfully, a handle is entered in the variable referenced by the
pointer, and this handle is used for all subsequent accesses to this data
channel. In the event of an error, a valid value is not entered in the variable.

An appropriate error code is instead returned by the DDI_DevOpenNode
function, which can be used to determine the cause of the error.

The node handle, which is returned to the application program is
automatically generated by the DDI or bus terminal. This node handle has
direct reference to an internal control structure, which contains all the
corresponding data for addressing the relevant bus terminal.

The local node handle is used to obtain all the necessary parameters for
addressing the bus terminal, such as the IP address, socket handle, node
handle on the bus terminal, etc. from this control structure when it is
subsequently accessed.

A control structure is occupied when the data channel is opened and is not
released until the DDI_DevCloseNode function has been executed or the
connection has been aborted. The maximum number of control structures
is determined when the library is compiled and cannot subsequently be
modified. In Windows NT/2000 there are 8 control structures per device,
with a maximum of 256.
If all the control structures are occupied, another data channel cannot be
opened. In this case, if DDI_DevOpenNode is called, it is rejected locally
with the appropriate error message.

Syntax: IBDDIRET IBDDIFUNC DDI_DevOpenNode (CHAR *devName, INT16
perm, IBDDIHND *nodeHd);

Parameters: CHAR *devName Pointer to a string with the device name.
INT16 perm Access rights to the data channel to be opened.

This includes read, write, and read/write access.
IBDDIHND *nodeHd Pointer to a variable for the node handle (MXI or

DTI).

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

FL IL 24 BK-B-PAC UM E

3-22 654403

Constants for the
perm parameter

DDI_READ 0x0001 /* Read only access */
DDI_WRITE 0x0002 /* Write only access */
DDI_RW 0x0003 /* Read and write access */

Example Windows NT/2000 / UNIX:

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;

ddiRet=DDI_DevOpenNode ("IBETH01N1_D", DDI_RW,
&ddiHnd);

if (ddiRet != ERR_OK)
{

/* Error treatment*/
.
.
return:

}
.

}

DDI_DevCloseNode

Task: If a data channel is no longer needed, it can be closed using the
DDI_DevCloseNode function. This function uses only the node handle as
a parameter, which indicates the data channel that is to be closed. If the
data channel cannot be closed or the node handle is invalid, an appropriate
error code is returned by the function.

Syntax: IBDDIRET IBDDIFUNC DDI_DevCloseNode(IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the connection that
is to be closed.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

All active connections should be closed before calling the
DDI_DevCloseNode function.

Driver Software

654403 3-23

Example UNIX / Windows NT/2000

IBDDIHND ddiHnd;

.
{

IBDDIRET ddiRet;

.

.

.
ddiRet=DDI_DevCloseNode (ddiHnd);

if (ddiRet != ERR_OK)
{

/* Error treatment*/
.
.
.

}
return;

}

FL IL 24 BK-B-PAC UM E

3-24 654403

DDI_DTI_ReadData

Task The DDI_DTI_ReadData function is used to read process data from the
Inline bus terminal. The function is assigned the node handle and a pointer
to a T_DDI_DTI_ACCESS data structure.

The T_DDI_DTI_ACCESS structure contains all the parameters that are
needed to access the process data area of the bus terminal and
corresponds to the general DDI specification. A plausibility check is not
carried out on the user side, which means that the parameters are
transmitted via the network just as they were transferred to the function.

The nodeHd parameter specifies the bus terminal in the network to which
the request is to be sent. The node handle must also be assigned to a
process data channel, otherwise an appropriate error message is
generated by the bus terminal.

Syntax: IBDDIRET IBDDIFUNC DDI_DTI_ReadData(IBDDIHND nodeHd,
T_DDI_DTI_ACCESS *dtiAcc);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the connection from which
data is to be read. The node handle also
determines the bus terminal, which is to be
accessed.

T_DDI_DTI_ACCESS *dtiAcc
Pointer to a T_DDI_DTI_ACCESS data
structure. This structure contains all the
parameters needed for access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Format of the
T_DDI_DTI_
ACCESS
structure:

typedef struct {
USIGN16 length;

/* Amount of data to be read in bytes */
USIGN16 address;

/* Address in the DTI area (byte address) */
USIGN16 dataCons;

/* Desired data consistency area */
USIGN8 *data;

/* Pointer to the data (read and
write) */

} T_DDI_DTI_ACCESS;

Driver Software

654403 3-25

Example UNIX / Windows NT/2000

IBDDIHND ddihnd;

.
{

IBDDIRET ddiRet;
T_DDI_DTI_ACCESS dtiAcc;
USIGN8 iBuf[512];

dtiAcc.length = 512;
dtiAcc.address = 0;
dtiAcc.data = iBuf;
dtiAcc.dataCons = DTI_DATA_BYTE;

ddiRet = DDI_DTI_ReadData (ddiHnd, &dtiAcc);

if (ddiRet != ERR_OK)
{

/* Error treatment*/
.
.
.

}
.
.
.

}

FL IL 24 BK-B-PAC UM E

3-26 654403

DDI_DTI_WriteData

Task: The DDI_DTI_WriteData function is used to write process data to the bus
terminal.

The function is assigned the node handle and a pointer to a
T_DDI_DTI_ACCESS data structure.

The T_DDI_DTI_ACCESS structure contains all the parameters that are
needed to access the process data area of the bus terminal and
corresponds to the general DDI specification. A plausibility check is not
carried out on the user side, which means that the parameters are
transmitted via the network just as they were transferred to the function.

The nodeHd parameter specifies the bus terminal in the network to which
the request is to be sent. The node handle must also be assigned to a
process data channel, otherwise an appropriate error message is
generated by the bus terminal.

Syntax: IBDDIRET IBDDIFUNC DDI_DTI_WriteData(IBDDIHND nodeHd,
T_DDI_DTI_ACCESS *dtiAcc);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the connection to which
data is to be written. The node handle also
determines the bus terminal, which is to be
accessed.

T_DDI_DTI_ACCESS *dtiAcc
Pointer to a T_DDI_DTI_ACCESS data
structure. This structure contains all the
parameters needed for access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

By default upon delivery, the watchdog is activated with 500 ms timeout.
The first write process starts the process data watchdog; the next write
process is expected during the next timeout (default: 500 ms).

Cycle-consistent data is written for all data consistency areas of more
than one byte.

Driver Software

654403 3-27

Format of the
T_DDI_DTI_
ACCESS
ACCESS

typedef struct {
USIGN16 length;

/* Amount of data to be written in
bytes */

USIGN16 address;
/* Address in the DTI area (byte address) */

USIGN16 dataCons;
/* Desired data consistency area */

USIGN8 *data;
/* Pointer to the data (read and
write) */

} T_DDI_DTI_ACCESS;

Example UNIX / Windows NT/2000

IBDDIHND ddiHnd;

.
{

IBDDIRET ddiRet;
T_DDI_DTI_ACCESS dtiAcc;
USIGN8 oBuf[512];

dtiAcc.length = 512;
dtiAcc.address = 0;
dtiAcc.data = oBuf;
dtiAcc.dataCons = DTI_DATA_BYTE;

oBuf[0] = 0x12;
oBuf[1] =0x34;

ddiRet = DDI_DTI_WriteData (ddiHnd, &dtiAcc);

if (ddiRet != ERR_OK)
{
/* Error treatment*/

}
.

}

FL IL 24 BK-B-PAC UM E

3-28 654403

DDI_DTI_ReadWriteData

Task: The DDI_DTI_ReadWriteData function is used to read and write process
data in one call. This function increases performance considerably,
especially when using process data services via the network, because
process data is read and written in a single sequence.

The function is assigned the node handle and two pointers to
T_DDI_DTI_ACCESS data structures. One structure contains the
parameters for read access and the other structure contains the
parameters for write access. The T_DDI_DTI_ACCESS structure
corresponds to the general DDI specification. A plausibility check is not
carried out on the user side, which means that the parameters are
transmitted via the network just as they were transferred to the function.

The nodeHd parameter specifies the bus terminal in the network to which
the request is to be sent. The node handle must be assigned to a process
data channel, otherwise an appropriate error message is generated by the
bus terminal.

Syntax: IBDDIRET IBDDIFUNC DDI_DTI_ReadWriteData (IBDDIHND nodeHd,
T_DDI_DTI_ACCESS *writeDTIAcc,
T_DDI_DTI_ACCESS *readDTIAcc);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the connection to which
data is to be written. The node handle also
determines the bus terminal, which is to be
accessed.

T_DDI_DTI_ACCESS *writeDTIAcc
Pointer to a T_DDI_DTI_ACCESS data structure
with the parameters for write access.

T_DDI_DTI_ACCESS *readDTIAcc
Pointer to a T_DDI_DTI_ACCESS data structure
with the parameters for read access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

By default upon delivery, the watchdog is activated with 500 ms timeout.
The first write process starts the process data watchdog; the next write
process is expected during the next timeout (default: 500 ms).

Driver Software

654403 3-29

Format of the
T_DDI_DTI_
ACCESS
structure

typedef struct {
USIGN16 length;

/* Amount of data to be read in bytes */
USIGN16 address;

/* Address in the DTI area (byte address) */
USIGN16 dataCons;

/* Desired data consistency area */
USIGN8 *data;

/* Pointer to the data (read and
write) */

} T_DDI_DTI_ACCESS;

Example UNIX / Windows NT/2000

IBDDIHND ddiHnd;

{
IBDDIRET ddiRet;
T_DDI_DTI_ACCESS dtiReadAcc;
T_DDI_DTI_ACCESS dtiWriteAcc
USIGN8 oBuf[512];
USIGN8 iBuf[512];

dtiWriteAcc.length = 512;
dtiWriteAcc.address = 0;
dtiWriteAcc.data = oBuf;
dtiWriteAcc.dataCons = DTI_DATA_BYTE;

dtiReadAcc.length = 512;
dtiReadAcc.address = 0;
dtiReadAcc.data = iBuf;
dtiReadAcc.dataCons = DTI_DATA_BYTE;

oBuf[0]= 0x12
oBuf[1]= 0x34

ddiRet=DDI_DTI_ReadWriteData (ddiHnd,
&dtiWriteAcc, &dtiReadAcc);

if (ddiRet!=ERR_OK)
{

/* Error treatment*/
. .

}

FL IL 24 BK-B-PAC UM E

3-30 654403

DDI_MXI_SndMessage

Task: The DDI_MXI_SndMessage function is used to send a message to the bus
terminal. The function receives a node handle and a pointer to a
T_DDI_MXI_ACCESS data structure as parameters. The
T_DDI_MXI_ACCESS structure contains all the parameters that are
needed to send the message.

These parameters are transmitted to the bus terminal via the network
without a plausibility check, which means that invalid parameters are first
detected at the bus terminal and acknowledged with an error message.
The IBDDIHND nodeHd parameter specifies the bus terminal in the
network to which the request is to be sent.

The node handle must be assigned to a mailbox interface data channel,
otherwise an appropriate error message is generated by the bus terminal.

Syntax: IBDDIRET IBDDIFUNC DDI_MXI_SndMessage (IBDDIHND nodeHd,
T_DDI_MXI_ACCESS *mxiAcc);

Parameters: IBDDIHND nodeHd Node handle (MXI) for the connection via which
a message is to be written to the mailbox
interface. The node handle also determines the
bus terminal, which is to be accessed.

T_DDI_MXI_ACCESS *dtiAcc
Pointer to a T_DDI_MXI_ACCESS data
structure. This structure contains all the
parameters needed for access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Format of the
T_DDI_MXI_
ACCESS
structure

typedef struct {
USIGN16 msgType;

/* Message type (see DDI description) */
USIGN16 msgLength;

/* Length of the message in bytes */
USIGN16 DDIUserID;/* Message ID */
USIGN8 *msgBlk;

/* Pointer to the message data */
} T_DDI_MXI_ACCESS;

Driver Software

654403 3-31

Example UNIX / Windows NT/2000

IBDDIHND mxiHnd;

.

.
{

IBDDIRET ddiRet;
T_DDI_MXI_ACCESS mxiAcc;
USIGN8 oBuf[256];

mxiAcc.msgLength = 4;
mxiAcc.DDIUserID = 0;
mxiAcc.msgType = 0;
mxiAcc.msgBlk = oBuf;

IB_SetCmdCode (oBuf, S_CREATE_CFG_REQ);
IB_SetParaCnt (oBuf, 1);
IB_SetParaN (oBuf, 1, 1);

ddiRet = DDI_MXI_SndMessage (mxiHnd, &mxiAcc);

if (ddiRet!=ERR_OK)
{

/* Error treatment*/
.
.
.

}
.
.
.

}

FL IL 24 BK-B-PAC UM E

3-32 654403

DDI_MXI_RcvMessage

The DDI_MXI_RcvMessage function reads a message from the bus
terminal. The function receives a node handle and a pointer to a
T_DDI_MXI_ACCESS data structure as parameters. The
T_DDI_MXI_ACCESS structure contains all the parameters that are
needed to read the message.
These parameters are transmitted to the bus terminals via the network
without a plausibility check, which means that invalid parameters are first
detected at the bus terminal and acknowledged with an error message.
The nodeHd parameter specifies the bus terminal in the network to which
the request is to be sent. The node handle must be assigned to a mailbox
interface data channel, otherwise an appropriate error message is
generated by the bus terminal.
The function does not wait until a message is received in the coupling
memory, instead it returns immediately. If no message is present, the error
code ERR_NO_MSG is returned.

Syntax: IBDDIRET IBDDIFUNC DDI_MXI_RcvMessage(IBDDIHND nodeHd,
T_DDI_MXI_ACCESS *mxiAcc);

Parameters: IBDDIHND nodeHd Node handle (MXI) for the connection via which
a message is to be read from the mailbox
interface. The node handle also determines the
bus terminal, which is to be accessed.

T_DDI_MXI_ACCESS *dtiAcc
Pointer to a T_DDI_MXI_ACCESS data
structure. This structure contains all the
parameters needed for access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Format of the
T_DDI_MXI
_ACCESS
structure

typedef struct {
USIGN16 msgType;

/* Message type */
USIGN16 msgLength;

/* Length of the message in bytes */

To prevent excessive mailbox interface requests, special modes can be
activated for reading the message, which enable the system to wait for a
message from the bus terminal.

Driver Software

654403 3-33

USIGN16 DDIUserID;
/* Message ID */

USIGN8 *msgBlk;
/* Pointer to the message data */

} T_DDI_MXI_ACCESS;

Example UNIX / Windows NT/2000

IBDDIHND mxiHnd;
.
.
{

IBDDIRET ddiRet;
T_DDI_MXI_ACCESS mxiAcc;
USIGN8 iBuf[256];
USIGN16 msgCode;
USIGN16 paraCounter;
USIGN16 parameter[128];
unsignet int i;

mxiAcc.msgLength = 256;
mxiAcc.DDIUserID = 0;
mxiAcc.msgType = 0;
mxiAcc.msgBlk = iBuf;

ddiRet = DDI_MXI_RcvMessage (mxiHnd, &mxiAcc);

if (ddiRet != ERR_OK)
{

/*Evaluation of the message*/

msgCode = IB_GetMsgCode (iBuf);
paraCounter = IB_GetParaCnt (iBuf);

for (i=0; i<paraCounter; i++)
{

parameter[i] = IB_GetParaN (iBuf, i);
}

}
}

FL IL 24 BK-B-PAC UM E

3-34 654403

GetIBSDiagnostic

Task: The DDI_GetIBSDiagnostic function reads the diagnostic bit register and
the diagnostic parameter register. The function receives a valid node
handle and a pointer to a T_IBS_DIAG data structure as parameters. After
the function has been called successfully, the structure components
contain the contents of the diagnostic bit register and the diagnostic
parameter register in processed form.

Syntax: IBDDIRET IBDDIFUNC DDI_GetIBSDiagnostic(IBDDIHND nodeHd,
T_IBS_DIAG *infoPtr);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) of the bus terminal from
which the diagnostic bit register and diagnostic
parameter register are to be read.

T_IBS_DIAG *infoPtrPointer to a T_IBS_DIAG data structure. The
contents of the register are entered in this structure.

Format of the
T_IBS_DIAG
structure

typedef struct {
USIGN16 state;/* Status of the local bus*/
USIGN16 diagPara;

/* Type of error (controller,
user, etc.) */

} T_IBS_DIAG;

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example UNIX / Windows NT/2000

IBDDIHND ddiHnd;
{

T_IBS_DIAG infoPtr;
IBDDIRET ddiRet;
USIGN16 stateAB;
USIGN16 diagAB;
{

Sleep (20)/* Depending on the operating
system */;

ddiRet = GetIBSDiagnostic (ddiHnd, &infoPtr);
stateAB = infoPtr.state;
diagAB = infoPtr.diagPara;

} while (...)
}

Driver Software

654403 3-35

3.8 Monitoring Function

Monitoring functions with different features are available for monitoring the
Ethernet communication or the connected devices:
– Process data watchdog (process data monitoring),
– Host checking and
– DTI monitoring.

There are monitoring functions according to the features/functions that
need to be monitored. According to the application request the appropriate
monitoring function can be activated. By default upon delivery, the process
data watchdog is active.

In the event of an error the system reacts with a fault response. The user
determines the required fault response mode.

Setting the Required Fault Response Mode

The required fault response mode can be set to the object ID 0x2277 using
the web-based management or by writing to the Modbus register 2002 or
using the "Set_Value" (0x0750) service. The following fault response
modes are available:

Table 3-3 Monitoring functions

Monitoring Mechanism Monitoring …

... the Client
Application

... the
Individual
Channels

... the
Ethernet

Connection

... the Process
Data Exchange

Process data watchdog
(process data monitoring),

X - - - X X

Host checking - - - - - - X - - -

DTI/Modbus monitoring. X X X - - -

Table 3-4 Available fault response modes

Fault Response Mode Value Function

Reset fault mode
(default)

1 The digital outputs are set to "0" and the analog outputs are set
to the value configured by the user (Default = „0“)

Standard fault mode 0 All outputs are set to "0".

Hold last state mode 2 All outputs retain their last value.

FL IL 24 BK-B-PAC UM E

3-36 654403

Causes for Fault Response

The web- based management, the Modbus register 2004 or the
"ETH_GetNetFailState" service allow to request the causes for fault
response.

Causes The following may have been the cause:
DDI_NF_TASK_CREAT_ERR 0x0001

/* Error when starting a task */
DDI_NF_LISTENER_ERR 0x0002

/* Listener task error */
DDI_NF_RECEIVER_ERR 0x0003

/* Receiver task error */
DDI_NF_ACCEPT_ERR 0x0004

/* Accept function error */
DDI_NF_ECHO_SERVER_ERR 0x0005

/* Echo server task error */
DDI_NF_HOST_CONTROLLER_ERR 0x0006

/* Host controller task error */
DDI_NF_DTI_TIMEOUT 0x0007

/* DTI timeout occurred */
DDI_NF_HOST_TIMEOUT 0x0008

/* Host timeout occurred */
DDI_NF_USER_TEST 0x0009

/* NetFail set by user */
DDI_NF_CONN_ABORT 0x000A

/* Connection aborted */
DDI_NF_INIT_ERR 0x000B

/* Initialization error */
DDI_NF_DTI_WATCHDOG 0x000C

/* Process data watchdog triggered */
DDI_NF_MBUS_TIMEOUT 0x000D

/* Modbus timeout occurred */

Acknowledges the NetFail Signal

The Net Fail signal can be acknowledged using the web based
management, or by setting Bit 1 in the Command-Word of the Modbus
register 4076, or using the "ETH_ClrNetFailState" service.

Driver Software

654403 3-37

3.8.1 Process Data Monitoring /
Process Data Watchdog

3.8.1.1 Process Data Watchdog Function

A process data watchdog is integrated into the bus terminal to avoid
uncontrolled setting/resetting of the Inline station outputs in the event of an
error.
If outputs of the stations are set, ensure the controlling process access to
the station. In an event of an error, e.g., network line interrupted or
functional error in the controlling process, the bus terminal can respond
appropriately. By default upon delivery, the watchdog is activated with
500 ms timeout. The first write process activates the process data
watchdog; the next write process is exptected during timeout (default:
500 ms). During error-free operation, the write process is realized during
timeout and the watchdog is restarted (triggered).

If there is no triggering during timeout, an error occured. Two responses
follow:
– The selected fault response mode is executed
– and the net fail signal is set.

The reason for setting the NetFail signal is listed in the reason code (see
list on page 3-36).

For safety reasons, the user cannot stop the watchdog once it has been
activated. In case the user terminates the controlling application, there is
no watchdog triggering; when timeout has expired, the NetFail signal is set
and the selected fault response mode is executed.

The NetFail signal can be acknowledged using the web-based
management or using the "ETH_ClrNetFailState" command and the fault
response Mode is reset.

By default upon delivery, the process data watchdog is activated with
500 ms timeout.

Read calls do not trigger the process data watchdog.

By acknowledging the error, the watchdog is restarted. This means that
it must be triggered during timeout, otherwise an error is detected again.

FL IL 24 BK-B-PAC UM E

3-38 654403

3.8.1.2 Configuring the Process Data Watchdog and the Fault
Response Modes

Process data watchdog timeout can be configured from 200 to 65,000 ms.
Timeout can be set to the object ID 0x2293 using the web-based
management or by writing to the Modbus register 2000 or using the
"Set_Value" (0x0750) service.

Deactivating the Process Data Watchdog

The process data watchdog can only be deactivated if the bus terminal is
in "INIT" state. For switching off, the value of timeout is set to "Zero". The
required fault response mode can also be set to the object ID 0x2277 using
the web-based management or by writing to the Modbus register 2002 or
using the "Set_Value" (0x0750) service.

Status Diagram of the Process Data Watchdog

Figure 3-11 Status diagram of the process data watchdog

Timeout can only be changed if the watchdog is in "INIT" state. The "INIT“
state occurs after a power-up as long as no process data exchange has
taken place or in the event of a timeout when fault response was
activated and no acknowledgment of the NetFail has yet taken place.

� � ; ' �
 � -

� & (& + 2
 ? � � � ?

� �

� � " � � � � #

A (& 3 / � � 4

 . , ' � + &
 I
 � G

B (

A � . & ' J �
 !
9 E J �) ' (� � ' & 	 (.)

� �

� ' K + ' 2 & �
� � 9 � � � �
 � + % % . % 4 G

B (

< ' 2

� � � � 9 �
A � . & ' J �

� �

A (& 3 / � � 4 � . , ' � + &
 9 C - . � ' 2
� ' &
 � ' &
 	 (.)

	 (+) &
 � ' 2 - � % 2 '

Driver Software

654403 3-39

3.8.2 Connection Monitoring (Host Checking)

Application

Connection monitoring can be used to determine whether there is still a
connection between the bus terminal (server) and the computer (client) and
whether this computer responds to requests. With connection monitoring it
is also possible to detect the following error causes:
– Cable broken, not connected or short-circuited.
– Transceiver faulty.
– Errors or faults in the Ethernet adapter of the bus terminal or

in the client.
– System crash of the client (workstation).
– Error in the TCP/IP protocol stack.

Activating Monitoring

The ETH_SetHostChecking function activates the mode for monitoring the
connection and the status of the client. The function is assigned a valid
node handle (DTI or MXI data channel) and a pointer (time) to a variable
with the timeout time.

This mode can be activated for all clients (workstations) with a DDI
connection. A connection to a client, which only uses Ethernet
management cannot be monitored. If several connections to a client are
activated simultaneously, the client is only addressed once during a cycle.
If the connection no longer exists, monitoring is also reset.

Echo Port

Monitoring uses the so-called echo port, which is provided on all systems
that support TCP/IP. Each data telegram to this port is sent back from the
receiver to the sender. The port is used for both connection-oriented TCP
and connectionless UDP. In the case of the bus terminal, the echo port is
used with UDP, to keep the resources used to a minimum.

Detecting an Error

Connection monitoring sends a short data telegram to a client every
500 ms. This interval is predefined and does not change according to the
number of clients that are addressed. This means that the frequency with
which each client is "addressed" decreases with the number of connected
clients. After the data telegram has been sent, the Inline bus terminal waits
for a user-defined time for the reply to be received. If the reply is not
received within this time, the bus terminal sends another data telegram to

FL IL 24 BK-B-PAC UM E

3-40 654403

the relevant client. This process is repeated a maximum of three times.
Connection monitoring then assumes that a serious error has occurred and
sets the NetFail signal (outputs are set to zero).

Deactivating Monitoring

If connection monitoring is no longer required, it can be deactivated using
the ETH_ClearHostChecking function. Monitoring is only deactivated for
the client and the connection, which are specified by the node handle. If the
same client has additional DDI connections to the bus terminal and
connection monitoring was also activated for these connections, this client
is still monitored via the other connections.

If a DDI connection is closed using DDI_DevCloseNode, monitoring for this
client is also deactivated. Additional connections are treated as above; they
are not reset and monitoring for these connections is not deactivated.

Echo Port on the Client (PC)

ETH_SetHostChecking

Task: After the ETH_SetHostChecking function has been called successfully, the
client (user workstation) is addressed by the bus terminal at regular
intervals.

If the client does not respond within the predefined time (timeout time),
three additional attempts are made to address the client. If there is still no
response, the NetFail signal is set and the TCP connection is aborted by
the bus terminal.

Syntax: IBDDIRET IBDDIFUNC ETH_SetHostChecking (IBDDIHND nodeHd,
USIGN16 *time);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus terminal
that is to be monitored.

On a PC with Windows as operating system, an echo server is running if
TCP/IP has been installed. You will find these services under ...\system
control\network\services. The user must ensure that the echo server
answers within 500 ms in every operating state. The echo server
implemented per default in Windows 2000 does not meet these
requirements. For this reason, the user should use DTI monitoring for
connection monitoring.

Driver Software

654403 3-41

USIGN16 *time Pointer to a variable, which contains the desired
timeout time when called. If the function has
been called successfully, the actual timeout time
is then entered in this variable. The shortest
value for the timeout time is 330 ms, the longest
value for timeout time is 65,000 ms. If a shorter
value is entered, the error code
ERR_INVLD_PARAM is returned and "Host
Checking" is not activated.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{
void CAU00yxDlg::OnButtonSetHostCheckingOn()
{

IBDDIRET ddiRet;
USIGN16 hcTime = 1000;
.
.
.
{

ddiRet = ETH_SetHostChecking
(ddiHnd, &hcTime);
if (ddiRet == ERR_INVLD_PARAM)
{

/*hcSelected time is too short
(330 ms, minimum)*/
.
.
.

}
}
UpdateData (FALSE)

}

FL IL 24 BK-B-PAC UM E

3-42 654403

ETH_ClearHostChecking

Task: The ETH_ClearHostChecking function deactivates the node used to
monitor the client. This function only receives the node handle as a
parameter, which is also used to activate monitoring with
ETH_SetHostChecking. After the function has been called successfully,
monitoring via this channel and for this client is deactivated. Other
activated monitoring channels are not affected.

Syntax: IBDDIRET IBDDIFUNC ETH_ClearHostChecking (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus terminal for
which monitoring is to be deactivated. The same
node handle that was used for activating
monitoring must also be used here.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

3.8.3 Data Interface (DTI) Monitoring

Error Detection and Response

Client monitoring using connection monitoring can only determine whether
a client can still be addressed. It is not possible to determine whether the
process that controls the bus terminal (application program) is still
operating correctly. An extremely serious error occurs when the controlling
process is no longer operating correctly, i.e., the bus terminal is no longer
supplied with up-to-date process data and as a result incorrect output data
is sent to the local bus devices.

DTI monitoring can detect if a message to the data interface of the bus
terminal has failed to arrive and the appropriate safety measures can be
implemented. In this case, the failure of the DTI data telegram sets the
NetFail signal and resets the output data for the local bus devices to zero.

Activating Monitoring

Monitoring of the data interface (DTI) is not activated immediately after the
ETH_SetDTITimeoutCtrl has been called, but only after data is written to or
read from the DTI for the first time using the node handle, which was also
used when activating monitoring. Writing to or reading from the DTI via a
connection or a node handle for which no monitoring is set does not

Driver Software

654403 3-43

therefore enable monitoring for another connection.
Once access has been enabled for the first time, all subsequent access
must be enabled within the set timeout time, otherwise the NetFail signal is
activated.

Deactivating Monitoring

Monitoring is deactivated by calling the ETH_ClearDTITimeoutCtrl function
or by closing the relevant DTI node using the DDI_DevCloseNode function.

If a connection is interrupted by the bus terminal as a result of DTI
monitoring, the monitoring mode for this connection is deactivated and the
corresponding DDI node is closed (see also
"ETH_SETDTITimeoutCTRL").

If the bus terminal detects that a connection has been interrupted without
the node having been closed, the NetFail signal is set. This applies
especially if the controlling process (application program) is closed with an
uncontrolled action (e.g., pressing Ctrl+C) and all the open data channels
are closed by the operating system.

Status of the NetFail Signal

The user can read the status of the NetFail signal using the
ETH_GetNetFailStatus function. In addition to the status of the NetFail
signal, a second parameter is returned, which indicates the reason if the
NetFail signal has been set. An additional function for the controlled setting
of the NetFail signal is provided for test purposes. This enables the
behavior of the system in the event of a NetFail to be tested, especially
during program development. The ETH_SetNetFail function only needs a
valid node handle as a parameter, so that the corresponding module can
be addressed in the network.

The NetFail signal can only be reset by calling the ETH_ClrSysFailStatus
function or by executing a reset on the bus terminal.

FL IL 24 BK-B-PAC UM E

3-44 654403

ETH_SetDTITimeoutCtrl

Task: The ETH_SetDTITimeoutCtrl function activates the node for monitoring the
DTI data channel specified by the node handle. After this function has been
called, monitoring checks whether process data is received regularly. The
function is assigned a valid node handle for a DTI data channel and a
pointer (*time) to a variable with the desired timeout time. After the function
has been called, the timeout time calculated by the bus terminal can be
found in the USIGN16 *time variable.

Syntax: IBDDIRET IBDDIFUNC ETH_SetDTITimeoutCtrl (IBDDIHND nodeHd,
USIGN16 *time);

Parameters: IBDDIHND nodeHd Node-Handle (DTI) der Busklemme, die
überwacht werden soll.

USIGN16 *time Pointer to a variable, which contains the desired
timeout time when called. If the function has
been called successfully, the actual timeout time
is then entered in this variable. The timeout time
can be set to a value in the range of 110 ms up
to 65000 ms.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Driver Software

654403 3-45

ETH_ClearDTITimeoutCtrl

Task: The ETH_ClearDTITimeoutCtrl function deactivates the node for
monitoring process data activity. This function only receives the node
handle as a parameter, which is also used to activate monitoring. After the
function has been called successfully, monitoring via this channel and for
this client is deactivated. Other activated monitoring channels are not
affected.

Syntax: IBDDIRET IBDDIFUNC ETH_ClearDTITimeoutCtrl(IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the bus terminal for which
monitoring is to be deactivated. The same node
handle that was used for activating monitoring
must also be used here.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;
.
.
.
ddiRet = ETH_ClearDTITimeoutCtrl (ddiHnd);
.
.
.

}

FL IL 24 BK-B-PAC UM E

3-46 654403

3.8.4 I/O Fault Response Mode

In case the communication connection is disrupted, the user can select the
reaction of the FL IL 24 BK beforehand. Use the DDI command
"Set_Value" on the object ID 2277hex .The following table shows the three
possible reactions:

The FL IL 24 BK-B-PAC only has one internal volatile memory where the
process data are stored during runtime. This memory image is displayed
cyclically onto the appropriate Inline modules.

3.8.4.1 The Power Up Table

Example: A station consists of 3 I/O modules, an analog output module
with a length of 16 bit (AO), a digital output module with a length of 16 bit
(DO 16) and a digital output module with a length of 2 bit (DO 2). After a
power up, all outputs are set to "0":

Table 3-5 Available fault response modes

Fault Response Mode Value Function

Reset Fault Mode
(Default)

1 The digital outputs are set to "0" and the analog outputs are set
to the value configured by the user (Default = „0“)

Standard Fault Mode 0 All outputs are set to "0".

Hold Last State Mode 2 All outputs retain their last value.

Table 3-6 Power up-sequence

Power Up Sequence

Front ´View of the
FL IL 24 BK

Configuration): Reset Fault Mode Configuration): Last State Fault
Mode

Internal memory Actual output Internal memory Actual output

Power up "0” "0” "0” "0”

First write access
onto an internal

memory after power
up.

"0” plus the new
values

Internal memory "0“ plus the new
values

Internal memory

Operation "0” plus the sum
of all new values

Internal memory "0” plus the sum
of all new values

Internal memory

Module AO DO 16 DO 2
Value 0x0000 0x0000 0x0000

Driver Software

654403 3-47

If 0x0200 as first value after the power up is written onto the DO 16 module,
we get the following output values:.

Then this is the ""0" plus the new values" state.

If values such as 0x0010 for AO, 0x0001 for DO 2 and 0xACDC for DO 16
have been written onto the respective modules via several write accesses,
we get the following output values:

Then this is the ""0" plus the sum of all new values" state.

3.8.4.2 The Connection Monitoring Table

This table shows the output values after the connection monitoring or the
process data watchdog detected an error such as a disconnection or a
communication error while the voltage supply remains the same.

Module AO DO 16 DO 2

Value 0x0000 0x0200 0x0000

Module AO DO 16 DO 2

Value 0x0010 0xACDC 0x0001

Table 3-7 Connection monitoring table

Connection Monitoring Table after Connection Abort, a Cable Interrupt or a Communication
Error.

Configuration of
the FL IL 24 BK

Configuration): "Reset Fault
Mode“

Configuration): "Last State Fault
Mode“

Internal memory Actual output Internal memory Actual output

Cable or
communication

error removal after
cable interrupt

Last values in the
internal memory

All digital
outputs are set

to "0".

Last values in the
internal memory

Values in the
internal memory

First write access in
the output table

after restoring the
connection

Last values in the
internal memory
plus the newly
written values

Internal
memory

Last values in the
output table plus
the newly written

values

Internal memory

Operation Last values in the
internal memory

plus all newly
written values

Internal
memory

Last values in the
internal memory

plus all newly
written values

Internal memory

FL IL 24 BK-B-PAC UM E

3-48 654403

Example: The last entries in the internal memory have the following values:

If 0x00A1 is written into the internal memory of the DO 16 as first value after
having restored the connection, we get the following actual output value:

This is the status "Last values in the internal memory plus the newly written
values".

If values such as 0x0010 for AO, 0x0001 for DO 2 and 0xACDC for DO 16
have been written into the internal memory via several write accesses, we
get the following output values:

This is the status "Last values in the internal memory plus the newly written
values".

3.8.5 Handling the NetFail Signal /
Testing With ETH_SetNetFail

The NetFail signal is set by writing a register in the coupling memory of the
bus terminal. As soon as this signal has been detected by the bus terminal,
all outputs of the local bus devices are set back.
Only after the NetFail signal has been set back to zero, the process data
can be ouput again. The NetFail signal is always set if the connection to the
client is interrupted, the bus terminal does not write data to the DTI within
the specified time or a general malfunction has been detected on the bus
terminal, which prevents safe operation.
The setting of the NetFail signal is indicated by setting the NetFail bit in the
control word of each data telegram, which is sent by the bus terminal. The
NetFail signal can be reset using the appropriate command or, if this is no
longer possible, by executing a power up.

Module AO DO 16 DO 2

Value 0x0123 0x4321 0x0002

Module AO DO 16 DO 2

Value 0x0123 0x00A1 0x0002

Module AO DO 16 DO 2

Value 0x0010 0xACDC 0x0001

Driver Software

654403 3-49

ETH_SetNetFail

Task: The ETH_SetNetFail function sets the NetFail signal on the bus terminal
and thus prevents the further output of process data to the local bus
devices. The function is assigned a node handle for a DTI or mailbox data
channel of the relevant bus terminal as a parameter.

Syntax: IBDDIRET IBDDIFUNC ETH_SetNetFail (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus terminal on
which the NetFail signal is to be executed.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHnd ddiHnd;
{

IBDDIRET ddiRet;
.
.
.
ddiRet = ETH_SetNetFail (ddiHnd);
.
.
.

}

ETH_GetNetFailStatus

Task: The ETH_GetNetFailStatus function sends the NetFail status to the user,
which is determined by the node handle of the bus terminal. The function
is assigned a node handle for an open DTI or MXI data channel and a
pointer to a T_ETH_NET_FAIL structure as parameters. After the function
has been called successfully, the structure components contain the status
(status) of the NetFail signal and an error code (reason) for triggering the
Netfail signal if the NetFail signal has been set.

If the NetFail signal is not set, the status structure component has the value
0. Otherwise status has the value 0xFFFF. The reason structure
component is only valid if the NetFail signal is set. The possible values for
reason can be found in the IOCTRL.H file.

FL IL 24 BK-B-PAC UM E

3-50 654403

Syntax: IBDDIRET IBDDIFUNC ETH_GetNetFailStatus (IBDDIHND nodeHd,
T_ETH_NET_FAIL *netFailInfo);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus terminal on
which the NetFail status is to be read.

T_ETH_NET_FAIL *netFailInfo
Pointer to a structure, which contains the NetFail
status and the reason for the NetFail, if
applicable.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Format of the
T_ETH_NET_FAIL
structure

typedef struct {
USIGN16 status; /* NetFailStatus */
USIGN16 reason; /* Reason for the NetFail */

} T_ETH_NET_FAIL;

Possible values for
the status structure
component:

ETH_NET_FAIL_ACTIVE0xFFFF
/* NetFail signal triggered */

(See also "Causes for Fault Response" on page 3-36)
ETH_NET_FAIL_INACTIVE0x0000
/* NetFail signal not triggered */

Example Unix / Windows NT/2000

IBDDIHND ddihnd;
{

IBDDIRET ddiRet;

T_ETH_NET_FAIL netFailInfo
USIGN16 nfStatus;
USIGN16 nfReason;
.
.
.
ddiRet = ETH_GetNetFailStatus (ddiHnd,
&netFailInfo);

if (ddiRet == ERR_OK)
{

Driver Software

654403 3-51

nfStatus = netFailInfo.status
nfReason = netFailInfo.reason;

}
.
.
.

}

FL IL 24 BK-B-PAC UM E

3-52 654403

ETH_ClrNetFailStatus

Task: The ETH_ClrNetFailStatus function resets the NetFail signal. This means
that process data can be output again and the status of the NetFail signal
is set to 0. The function is assigned a valid node handle for a DTI or MXI
data channel as a parameter.

Syntax: IBDDIRET IBDDIFUNC ETH_ClrNetFailStatus (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus terminal on
which the NetFail status is to be reset.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;
.
.
.
ddiRet = ETH_ClrNetFailStatus (ddiHnd);
.
.
.

}

Driver Software

654403 3-53

ETH_SetNetFailMode

Task: The ETH_SetNetFailMode routine is used to change the behavior of the
controller board in the event of a NetFail. After startup, the controller board
is in standard mode (ETH_NF_STD_MODE), which means that if a NetFail
occurs, all outputs of the modules connected to the INTERBUS system are
set to zero and the bus continues to run. This behavior can be changed by
calling the routine. At present, the controller board supports two different
modes:
– Standard mode: the controller board behavior remains the same, i.e.,

the outputs are set to zero in the event of an error.
– Alarm stop mode: not only are the outputs set to zero but an alarm stop

command is also sent to the controller board.

If the function is executed successfully, the routine returns the return value
0 (ERR_OK). In the event of an error, the return value is an error code (see
DDI_ERR.H).

Syntax: IBDDIRET IBDDIFUNC ETH_SetNetFailMode(IBDDIHND nodeHd,
T_ETH_NET_FAIL_MODE *netFailModeInfo);

The routine receives a valid node handle and a pointer to the structure
described below as parameters. In addition to a component in which the
mode to be set is entered, the structure contains a pointer to an optional
parameter block, the size of which is also entered in the structure. This
parameter block is purely optional and is not used for the modes that exist
at present. Thus, the structure component numOfBytes should be set to
zero.

Observe the dependency of possible further active monitoring functions.

In alarm stop mode, a command is sent to the controller board but the
return value is not obtained. That means that an application program will
receive this message on its next read attempt.

FL IL 24 BK-B-PAC UM E

3-54 654403

Parameters: IBDDIHND nodeHd Node handle of a controller board for which the
NetFail mode is to be changed.

T_ETH_NET_FAIL_MODE *netFailModeInfo
Pointer to a T_ETH_NET_FAIL_MODE data
structure. This structure contains the parameters
for setting the NetFail mode and, if necessary,
optional parameters.

Format of the
T_ETH_NET_FAIL_M
ODE
data structure

typedef struct {
USIGN16 mode; /* NetFail mode */
USIGN16 numOfBytes; /* Size of the parameter

block in bytes */
VOID *miscParamPtr; /* Parameters for the

relevant NetFail mode */

} T_ETH_NET_FAIL_MODE;

The function prototypes, the type definition of the data structure, and the
symbolic constants can be found in the IOCTRL.H file.

Driver Software

654403 3-55

ETH_GetNetFailMode

Task: The ETH_GetNetFailMode function can be used to read the set NetFail
mode. The routine expects a valid node handle and a pointer to a
T_ETH_NET_FAIL_MODE data structure (see above) as parameters.
After the routine has been called successfully, the user can read the set
NetFail mode from the structure. If there are no additional parameters for
this mode, this is indicated by the structure component numOfBytes, which
contains the value zero in this case.

Syntax: IBDDIRET IBDDIFUNC ETH_GetNetFailMode(IBDDIHND nodeHd,
T_ETH_NET_FAIL_MODE *netFailModeInfo)

Parameters: IBDDIHND nodeHd Node handle of a controller board from which
information on the set NetFail mode is to be
read.

T_ETH_NET_FAIL_MODE *netFailModeInfo
Pointer to a T_ETH_NET_FAIL_MODE data
structure. If the function is called successfully,
the parameters of the NetFail mode set on the
controller board as well as the mode itself are
entered in this structure.

Format of the
structure

typedef struct {
 USIGN16 mode; /* NetFail mode */
 USIGN16 numOfBytes; /* Size of the parameter

block in bytes */
 VOID *miscParamPtr; /* Parameters for the

relevant NetFail mode */
} T_ETH_NET_FAIL_MODE;

Constants of the
different NetFail
modes

#define ETH_NF_STD_MODE 0
#define ETH_NF_ALARMSTOP_MODE 1

#define ETH_NF_HOLD_LAST_STATE_MODE 2

The function prototypes, the type definition of the data structure, and the
symbolic constants can be found in the IOCTRL.H file.

FL IL 24 BK-B-PAC UM E

3-56 654403

3.9 IN Process Data Monitoring

Functions that automatically monitor the process IN data area for changes
can be used to reduce the load on the Ethernet network. In systems in
which input signals only change slowly or rarely change, the same process
data is often transmitted in successive read cycles.

Transmission of the same data loads the network and the client (user
workstation) but does not provide any additional information. That is why it
is possible to only transmit process IN data to the client if this data has
changed.

The user now has the option to define an area to be monitored by the
controller board. This area is read by the controller board firmware
cyclically and compared with a reference image of the process data. The
comparison of the defined area with the process image of the reference
data and the transmission of the data to the relevant client takes place
within a period of ≥22 ms.

If it is established that the data that has been read differs from the reference
image, the read data is automatically sent to the relevant client and entered
as the new reference image.

In addition, areas in which changes are not taken into account can be
specified. This provides an easy option for masking out the low-order bits
of an analog input that change frequently. The modified data is sent by an
unconfirmed service.

Driver Software

654403 3-57

ETH_ActivatePDInMonitoring

Task: The ETH_ActivatePDInMonitoring function activates the mode for
monitoring the process IN data for potential changes. This mode can only
be activated once on each controller board.

The function is assigned a valid node handle for a DTI data channel and a
pointer to a T_ETH_PD_IN_MON structure as parameters. The
T_ETH_PD_IN_MON structure contains all the information needed to
parameterize the process IN data monitoring:
mode Mode in which the monitoring is to be executed.
address Start address (in bytes) from which the input data

is to be monitored.
numOfBytes Size of the area to be monitored in bytes (it must

not exceed 1024 bytes).
*maskData Pointer to a vector with the masking data.
*notifyFuncPtr Zero (is not supported)

Function: The masking data is combined bit-by-bit with the data that has been read
and determines whether a change in the associated IN data bit will lead to
notification of the client. A set bit (1) means that this bit is of significance for
the monitoring. A bit that is not set (0) means that a change in the
associated bit in the process IN data area is insignificant.

Syntax: IBDDIRET IBDDIFUNC ETH_ActivatePDInMonitoring(IBDDIHND
nodeHd, T_ETH_PD_IN_MON *infoPtr);

If the "IN process data monitoring" function is used, it must be
deactivated again before closing the connection (DDI_DevCloseNode).

FL IL 24 BK-B-PAC UM E

3-58 654403

Parameters: IBDDIHND nodeHd Node handle (DTI) for the controller board for
which process data monitoring is to be activated.

T_ETH_PD_IN_MON *infoPtr
Pointer to a T_ETH_PD_IN_MON data structure.
This structure contains all the parameters
needed to activate monitoring.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Format of the data
structure:

typedef struct {
 USIGN16 mode; /* Selects the monitoring

mode*/
 USIGN16 address; /* Start address of the

area to be monitored*/
 USIGN16 numOfBytes; /* Size of the

area to be monitored*/
 USIGN8 *maskData; /* Pointer to buffer with the

masking data*/
 /* The size of the buffer

corresponds to numOfBytes*/
 VOID (*notifyFuncPtr)(IBDDIHND nodeHd,
T_DDI_DTI_ACCESS *dtiAcc);
 /* Pointer to a function

that is called if there is
a change in the PD IN data.*/

 USIGN32 timeout; /* Timeout time in ms
*/
} T_ETH_PD_IN_MON;

Constants for the
different modes

#define ETH_PD_IN_CHK_INACTIVE 0x0000 /* PD In Check is not
activated */

#define ETH_PD_IN_CHK_MODE_UDP 0x0002 /* Send data over UDP
port */

Description of the
constants

ETH_PD_IN_CHK_INACTIVE

Not in use at present.

Driver Software

654403 3-59

ETH_PD_IN_CHK_MODE_UDP

The controller board sends the process data to the client using UDP. The
routine automatically determines which port is used, i.e., the user does not
normally have any information about the port used. For this reason, the
user is provided with one routine that carries out all necessary tasks, thus
ensuring that this function is easy to use:

IBDDIRET IBDDIFUNC WaitForPDInIndication(IBDDIHND nodeHd,
T_DDI_DTI_ACCESS *dtiAcc)

The WaitForPDInIndication function is only assigned the node handle of a
valid data channel and a pointer to a T_DDI_DTI_ACCESS structure. The
routine returns as soon as process data is received or the timeout time that
was preset in timeout (see T_ETH_PD_IN_MON) has elapsed. The
components of the T_DDI_DTI_ACCESS structure are used to access the
process data. The routine returns an integer value, which indicates whether
process data has been received and is ready to be evaluated or whether a
timeout or another error caused the routine to be terminated. A return value
that is not zero always indicates an error that can be defined more
specifically using the value.

Proceed as follows:
– Activate process data monitoring with ETH_ActivatePDInMonitoring
– Wait for process data (input data) with WaitForPDInIndication

The standard DTI functions can be used to read and write input and output
values at any time, even if WaitForPDInIndication has been used in
another thread to wait for an indication.

If the controller board transmits data more quickly than the client retrieves
it, the client saves a certain amount of this data to prevent it from being lost
immediately. The amount of data saved by the client depends on the
system used and the settings in its TCP/IP protocol stack.

The T_DDI_DTI_ACCESS structure is not explained here because it has
already been described in detail in the standard DTI routines.

As UDP is used as the transmission protocol, it is not clear whether data
packets sent by the controller board actually reach the receiver. The
controller board does not repeat packets that are lost on the way to the
client.

FL IL 24 BK-B-PAC UM E

3-60 654403

ETH_DeactivatePDInMonitoring

Task: The ETH_DeactivatePDInMonitoring function deactivates process IN data
monitoring. The function is only assigned the node handle as a parameter,
which is also used to activate monitoring with
ETH_ActivatePDInMonitoring.

Syntax: IBDDIRET IBDDIFUNC ETH_DeactivatePDInMonitoring (IBDDIHND
nodeHd);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the controller board for
which process data monitoring is to be
deactivated.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

3.10 Notification Mode

General: The notification mode enables messages received in the MPM (e.g., a
message from the INTERBUS controller board) to be made available to the
application program immediately.

This reduces the load on the network and the computer because messages
do not have to be scanned cyclically. Data is only transmitted via the
network if there is actually a message in the MPM or a specified timeout
time has elapsed.

The format of the T_ETH_PD_IN_MON structure in the function used to
activate process data monitoring, ETH_ActivatePDInMonitoring, has
been modified in client software Version 1.10 or later. A modification was
necessary in order to enable additional monitoring modes and transfer
the parameters required for these modes. Active "process IN data
monitoring" must always be deactivated before closing the connection
(DDI_DevCloseNode).

Driver Software

654403 3-61

Notification Mode

Task: A feature of notification mode is that the message is awaited on the
controller board. A DDI_MXI_RcvMessage call waits on the controller
board until there is a message or the preset timeout time has elapsed. No
other requests can be sent via the channel during this period. Thus, the
data channel is practically blocked.

When the notification mode is activated, the timeout time is entered in the
T_ETH_NOTIFY_INFO structure and transmitted to the controller board.
The timeout time is endless if the value FFFF FFFFhex is entered.

Not possible under Windows NT: A call that blocks the data channel can
be terminated by calling the DDI_ClrMsgNotification routine. Another MXI
data channel should be used for this or another mailbox connection to the
controller board should be created. To remove the notification mode
using this additional connection, the value FEDChex (symbolic constant
ETH_NOTIFY_ABORT) should be entered in the mode structure
component. The DDI_MXI_RcvMessage function then returns the error
message ERR_BLOCK_TIMEOUT.

FL IL 24 BK-B-PAC UM E

3-62 654403

Syntax to be
activated:

IBDDIRET IBDDIFUNC DDI_SetMsgNotification(IBDDIHND nodeHd,
T_ETH_NOTIFY_INFO IBPTR *notifyInfoPtr)

Syntax to be
deactivated:

IBDDIRET IBDDIFUNC DDI_ClrMsgNotification(IBDDIHND nodeHd,
T_ETH_NOTIFY_INFO IBPTR *notifyInfoPtr)

UNIX

Parameters: mode Notification mode
processId
threadId
timeout Abort time in milliseconds

Format of the
structure:

typedef struct {
USIGN32 mode; /* Defines the notification mode */
USIGN32 threadId; /*Thread identifier */
USIGN32 processId;/*Process identifier */
USIGN32 timeout; /*Timeout time in milliseconds */
}T_ETH_NOTIFY_INFO;

Constants: #define ETH_NOTIFY_MODE_1

Windows NT/2000

Parameters: processId
threadId
timeout Abort time in milliseconds

Format of the
structure:

typedef struct {
DWORD threadId; /*Thread Identifier */
DWORD processId;/*Process Identifier */
USIGN32 timeout; /*Timeout time in milliseconds */
} T_IBS_WIN32_NOTIFY;

Timeout values can only be integer values.

Driver Software

654403 3-63

3.11 Programming Support Macros

3.11.1 Introduction

The macros described in this section make it easier to program the
application program. These macros also support data transfer (commands,
messages, and data) between Intel format and Motorola 68xxx format if a
workstation with Intel format is used to create an application program.

The Inline local bus numbers words (16-bit) according to the conventional
counting method of the Programmable Logic Controller (PLC). Because
consecutive words start on even byte addresses (1 byte = 8 bits), they are
also numbered according to the even byte addresses. For example,the
word, which contains bytes 6 and 7 is assigned the number 4.

The process data is sent to the computer as bytes. Because the data on
the bus terminal is in Motorola format, it is also received in this format on
the computer. If the processor on the computer is in BigEndian format
(Motorola), the data can also be processed further in a word-oriented way
without conversion. In a processor in LittleEndian format (Intel), the data
must be converted accordingly (word-oriented).

Figure 3-12 Assignment of the process data between the local bus and the
computer systems

� � 9 � � � �

% $ � % $ � % $ �

% % $ � % $ � % $ �� � , - + & ' �

%

E . 4 /
8 : & '

� � ;
8 : & '

E . 4 /
8 : & '

� � ;
8 : & '

A � � �
 , A � � �
 , $ �

" � # � � � � �

FL IL 24 BK-B-PAC UM E

3-64 654403

Figure 3-13 Using the macros for programming support

� % - + &

 8 + 5 5 ' �

� + & - + &

 8 + 5 5 ' �

� � � � � � �

 5 � � , (&

� � � � � � �

 5 � � , (&

� � � 3 ' 2 2
. , (4 '

 � � 9 �
5 � � , (&

 � (% 2 , . &
8 + 5 5 ' �

� � � � � � �

 5 � � , (&

� ' 3 ' . F '
8 + 5 5 ' �

� � � � � � �

 5 � � , (&

� + 5 5 ' �
 5 � �
3 � , , (% � 2
(% �

, ' 2 2 (4 ' 2

 � � 9 �
5 � � , (&

" � # � � � � �

� � % & � �)
 8 � (� �E � 2 & ! � � - � � 3 ' 2 2 � �
 8 � (� �

8 � 8
� � � � � � �

 5 � � , (&

� � �
)
 � � � � � � � '

� , , � 	 � � 	 � � � , � � + �)

1 1 � J � � � J
� � � � ' 2 2 (4 '

1 1 � J 1 � J
A � . & ' 1 (& (

1 1 � J 1 � J
� ' (� 1 (& (

� 8 � � �
 � (� �
� �)) � '

8 � � �
 � (� �
) �

 + �

8 � � �
 � (� �
� * � , * � � ' �

� � � 8 � � �
 � (� �
� � � 	 � , * � � ' �

1 1 � J � � � J
� % � � ' 2 2 (4 '

The macros are available for both processor types. For processors in
Motorola format, the macros have no function.

Driver Software

654403 3-65

3.12 Description of the Macros

Table 3-8 Driver software macros

Macro Task Page

IB_SetCmdCode Enters the command code (16-bit) in the specified transmit
buffer

3-66

IB_SetParaCnt Enters the parameter count (16-bit) in the specified transmit
buffer

3-67

IB_SetParaN Enters a parameter (16-bit) in the specified transmit buffer 3-67

IB_SetParaNHiByte Enters the high-order byte (bit 8 to 15) of a parameter in the
specified transmit buffer

3-67

IB_SetParaNLoByte Enters the low-order byte (bit 0 to 7) of a parameter in the
specified transmit buffer

3-67

IB_SetBytePtrHiByte Returns the address of a parameter entry starting with the
high-order byte (bit 8 to 15)

3-67

IB_SetBytePtrLoByte Returns the address of a parameter entry starting with the
low-order byte (bit 0 to 7)

3-69

IB_GetMsgCode Reads a message code (16-bit) from the specified receive
buffer

3-69

IB_GetParaCnt Reads the parameter count (16-bit) from the specified receive
buffer

3-69

IB_GetParaN Reads a parameter (16-bit) from the specified receive buffer 3-69

IB_GetParaNHiByte Reads the high-order byte (bit 8 to 15) of a parameter from
the specified receive buffer

3-70

IB_GetParaNLoByte Reads the low-order byte (bit 0 to 7) of a parameter from the
specified receive buffer

3-70

IB_GetBytePtrHiByte Returns the address of a parameter entry starting with the
high-order byte (bit 8 to 15)

3-70

IB_GetBytePtrLoByte Returns the address of a parameter entry starting with the
low-order byte (bit 0 to 7)

3-71

IB_PD_GetLongDataN Reads a double word (32-bit) from the specified position in
the input buffer

3-72

IB_PD_GetDataN Reads a word (16-bit) from the specified position in the input
buffer

3-72

FL IL 24 BK-B-PAC UM E

3-66 654403

The macros are defined for different operating systems and compilers in
the Device Driver Interface so that they can be used universally.

3.12.1 Macros for Converting the Data Block of a Command

IB_SetCmdCode (n, m)

Task: This macro converts a command code (16-bit) into Motorola format and
enters it in the specified transmit buffer.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Command code to be entered

IB_PD_GetDataNHiByte Reads the high-order byte (bit 8 to 15) of a word from the
input buffer

3-72

IB_PD_GetDataNLoByte Reads the low-order byte (bit 0 to 7) of a word from the input
buffer

3-72

IB_PD_GetBytePtrHiByte Returns the address of a word starting with the high-order
byte (bit 8 to 15)

3-73

IB_PD_GetBytePtrLoByte Returns the address of a word starting with the low-order byte
(bit 0 to 7)

3-73

IB_PD_SetLongDataN Writes a double word (32-bit) to the output buffer 3-73

IB_PD_SetDataN Writes a word (16-bit) to the output buffer 3-74

IB_PD_GetDataNHiByte Writes the high-order byte (bit 8 to 15) of a word to the output
buffer

3-74

IB_PD_GetDataNLoByte Writes the low-order byte (bit 0 to 7) of a word to the output
buffer

3-74

IB_PD_GetBytePtrHiByte Returns the address of a word starting with the high-order
byte (bit 8 to 15)

3-74

IB_PD_GetBytePtrLoByte Returns the address of a word starting with the low-order byte
(bit 0 to 7)

3-74

Table 3-8 Driver software macros

Macro Task Page

Driver Software

654403 3-67

IB_SetParaCnt (n, m)

Task: This macro converts the parameter count (16-bit) into Motorola format and
enters it in the specified transmit buffer. The call is only necessary when
dealing with a command with parameters. The parameter count specifies
the number of subsequent parameters in words.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter count to be entered

IB_SetParaN (n, m, o)

Task: This macro converts a parameter (16-bit) into Motorola format and enters
it in the specified transmit buffer. The call is only necessary when dealing
with a command with parameters.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter No. (counting begins with 1)
o(USIGN16): Parameter value to be entered

IB_SetParaNHiByte (n, m, o)

Task: This macro converts the high-order byte (bit 8 to 15) of a parameter into
Motorola format and enters it in the specified transmit buffer.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter No.
o(USIGN8): Parameter to be entered (byte)

IB_SetParaNLoByte (n, m, o)

Task: This macro converts the low-order byte (bit 0 to 7) of a parameter into
Motorola format and enters it in the specified transmit buffer.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter No.
o(USIGN8): Parameter to be entered (byte)

IB_SetBytePtrHiByte (n, m)

Task: This macro returns the address of a parameter entry starting with the high-
order byte (bit 8 to 15). The address is a USIGN8 * data type.

FL IL 24 BK-B-PAC UM E

3-68 654403

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter No.

Return value: (USIGN8 *): Address of the high-order byte of the parameter
in the transmit buffer.

Driver Software

654403 3-69

IB_SetBytePtrLoByte (n, m)

Task: This macro returns the address of a parameter entry starting with the low-
order byte (bit 0 to 7). The address is a USIGN8 * data type.

Parameters: n(USIGN8 *): Pointer to the transmit buffer
m(USIGN16): Parameter No.

Return value: (USIGN8 *): Address of the low-order byte of the parameter in
the transmit buffer.

3.12.2 Macros for Converting the Data Block of a Message

IB_GetMsgCode (n)

Task: This macro reads the message code (16-bit) from the specified receive
buffer and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the receive buffer

Return value: (USIGN16): Message code

IB_GetParaCnt (n)

Task: This macro reads the parameter count (16-bit) from the data block of the
message and converts it into Intel format. The parameter count specifies
the number of subsequent parameters in words.

Parameters: n(USIGN8 *): Pointer to the receive buffer

Return value: (USIGN16): Parameter count

Remark: This macro only reads the parameter count for messages that also have
parameters.

IB_GetParaN (n, m)

Task: This macro reads a parameter value (16-bit) from the data block of the
message and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the receive buffer
m(USIGN16): Parameter No.

FL IL 24 BK-B-PAC UM E

3-70 654403

Return value: (USIGN16): Parameter value

Remark: This macro only reads the parameter value for messages that also have
parameters.

IB_GetParaNHiByte (n, m)

Task: This macro reads the high-order byte (bit 8 to 15) of a parameter from the
specified receive buffer and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the receive buffer
m(USIGN16): Parameter No.

Return value: (USIGN8): Parameter value (byte)

Remark: This macro only reads the parameter value for messages that also have
parameters.

IB_GetParaNLoByte (n, m)

Task: This macro reads the low-order byte (bit 0 to 7) of a parameter from the
specified receive buffer and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the receive buffer
m(USIGN16): Parameter No.

Return value: (USIGN8): Parameter value (byte)

Remark: This macro only reads the parameter value for messages that also have
parameters.

IB_GetBytePtrHiByte (n, m)

Task: This macro returns the address of a parameter entry starting with the high-
order byte (bit 8 to 15). The address is a USIGN8 * data type.

Parameters: n(USIGN8 *): Pointer to the receive buffer
m(USIGN16): Parameter No.

Return value: (USIGN8 *): Address of the high-order byte of a parameter in
the receive buffer.

Driver Software

654403 3-71

IB_GetBytePtrLoByte (n, m)

Task: This macro returns the address of a parameter entry starting with the low-
order byte (bit 0 to 7). The address is a USIGN8 * data type.

Parameters: n(USIGN8 *): Pointer to the receive buffer
m(USIGN16): Parameter No.

Return value: (USIGN8 *): Address of the low-order byte of a parameter in
the receive buffer.

FL IL 24 BK-B-PAC UM E

3-72 654403

3.12.3 Macros for Converting Input Data

The IBS_MACR.H file contains macros for converting double words,
words, and bytes from Motorola to Intel format. Addressing is always word-
oriented here.

IB_PD_GetLongDataN (n, m)

Task: This macro reads a double word (32-bit) from the specified position in the
input buffer and converts it into Intel format. The word index in the input
buffer is used as a position. The macro reads the double word starting from
the specified word address over two words.

Parameters: n (USIGN8 *) Pointer to the input buffer
m (USIGN16) Word number

IB_PD_GetDataN (n, m)

Task: This macro reads a word (16-bit) from the specified position in the input
buffer and converts it into Intel format, if necessary.

Parameters: n(USIGN8 *): Pointer to the input buffer
m(USIGN16): Word number

Return value: (USIGN16): Process data (16-bit)

IB_PD_GetDataNHiByte (n, m)

Task: This macro reads the high-order byte (bit 8 to 15) of a word from the input
buffer and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the input buffer
m(USIGN16): Word number

Return value: (USIGN8): Process data (8-bit)

IB_PD_GetDataNLoByte (n, m)

Task: This macro reads the low-order byte (bit 0 to 7) of a word from the input
buffer and converts it into Intel format.

Parameters: n(USIGN8 *): Pointer to the input buffer

Driver Software

654403 3-73

m(USIGN16): Word number

Return value: (USIGN8): Process data (8-bit)

IB_PD_GetBytePtrHiByte (n, m)

Task: This macro returns the address of a word starting with the high-order byte
(bit 8 to 15).

Parameters: n(USIGN8 *): Pointer to the input buffer
m(USIGN16): Word number

Return value: (USIGN8 *): Address of the high-order byte of a word in the
input buffer.

IB_PD_GetBytePtrLoByte (n, m)

Task: This macro returns the address of a word starting with the low-order byte
(bit 0 to 7).

Parameters: n(USIGN8 *): Pointer to the input buffer
m(USIGN16): Word number

Return value: (USIGN8 *): Address of the low-order byte of a word in the
input buffer.

3.12.4 Macros for Converting Output Data

The IBS_MACR.H file contains macros for converting double words,
words, and bytes from Intel to Motorola format. Addressing is always word-
oriented here.

IB_PD_SetLongDataN (n, m, o)

Task: This macro converts a double word (32-bit) to Motorola format and writes
it to the specified position in the output buffer. The word index in the output
buffer is used as a position. The macro writes the double word starting from
the specified word address over two words.

Parameters: n (USIGN8 *) Pointer to the output buffer
m (USIGN16) Word number
o (USIGN32) Process data (32-bit)

FL IL 24 BK-B-PAC UM E

3-74 654403

IB_PD_SetDataN (n, m, o)

Task: This macro converts a word (16-bit) to Motorola format and writes it to the
specified position in the output buffer.

Parameters: n(USIGN8 *): Pointer to the output buffer
m(USIGN16): Word number
o(USIGN16): Process data (16-bit)

IB_PD_SetDataNHiByte(n, m, o)

Task: This macro converts the high-order byte (bit 8 to 15) of a word to Motorola
format and writes it to the specified position in the output buffer.

Parameters: n(USIGN8 *): Pointer to the output buffer
m(USIGN16): Word number
o(USIGN8): Process data (8-bit)

IB_PD_SetDataNLoByte (n, m, o)

Task: This macro converts the low-order byte (bit 0 to 7) of a word to Motorola
format and writes it to the specified position in the output buffer.

Parameters: n(USIGN8 *): Pointer to the output buffer
m(USIGN16): Word number
o(USIGN8): Process data (8-bit)

IB_PD_SetBytePtrHiByte (n, m)

Task: This macro returns the address of a word starting with the high-order byte
(bit 8 to 15).

Parameters: n(USIGN8 *): Pointer to the output buffer
m(USIGN16): Word number

Return value: (USIGN8 *): Address of the high-order byte of a word in the
output buffer.

IB_PD_SetBytePtrLoByte (n, m)

Task: This macro returns the address of a word starting with the low-order byte
(bit 0 to 7).

Driver Software

654403 3-75

Parameters: n(USIGN8 *): Pointer to the output buffer
m(USIGN16): Word number

Return value: (USIGN8 *): Address of the low-order byte of a word in the
output buffer.

FL IL 24 BK-B-PAC UM E

3-76 654403

3.13 Diagnostic Options of the Driver Software

3.13.1 Introduction

The driver software diagnostics uses error messages and error codes for
the individual functions. These error codes can be used to precisely define
the cause of an error. An operating system related offset (ERR_BASE) is
added to the the codes listed here. This offset has already been taken into
consideration when using error message definitions.

Table 3-9 Driver software messages

Code Error Message Cause Page

0000hex ERR_OK The function was executed successfully 3-77

0085hex ERR_INVLD_NODE_HD Invalid node handle specified 3-78

0086hex ERR_INVLD_NODE_STATE Node handle of a data channel that is already
closed specified

3-78

0087hex ERR_NODE_NOT_READY Desired node not ready 3-78

0088hex ERR_WRONG_DEV_TYP Incorrect node handle 3-78

0089hex ERR_DEV_NOT_READY Local bus master not ready yet 3-79

008Ahex ERR_INVLD_PERM Access type not enabled for channel 3-79

008Chex ERR_INVLD_CMD Utility function is not supported by driver Version
0.9

3-79

008Dhex ERR_INVLD_PARAM Command contains invalid parameter 3-79

0090hex ERR_NODE_NOT_PRES Node not available 3-80

0091hex ERR_INVLD_DEV_NAME Unknown device name used 3-80

0092hex ERR_NO_MORE_HNDL Device driver resources used up 3-80

0096hex ERR_AREA_EXCDED Access exceeds limit of selected data area 3-83

0097hex ERR_INVLD_DATA_CONS Specified data consistency is not permitted 3-83

009Ahex ERR_MSG_TO_LONG Message or command contains too many
parameters

3-81

009Bhex ERR_NO_MSG No message present 3-81

009Chex ERR_NO_MORE_MAILBOX No further mailboxes of the required size free 3-81

009Dhex ERR_SVR_IN_USE Send vector register in use 3-82

009Ehex ERR_SVR_TIMEOUT Invalid node called 3-82

Driver Software

654403 3-77

3.14 Positive Messages

ERR_OK 0000hex

Meaning: After successful execution of a function, the driver software generates this
message as a positive acknowledgment.

Cause: No errors occurred during execution of the function.

009Fhex ERR_AVR_TIMEOUT Invalid node called 3-82

00A9hex ERR_PLUG_PLAY Invalid write access to process data in P&P
mode

3-83

0100hex ERR_STATE_CONFLICT This service is not permitted in the selected
operating mode of the controller

3-83

0101hex ERR_INVLD_CONN_TYPE Service called via an invalid connection 3-84

0102hex ERR_ACTIVATE_PD_CHK Process IN data monitoring could not be
activated

3-84

0103hex ERR_DATA_SIZE The data volume is too large 3-84

0200hex ERR_OPT_INVLD_CMD Unknown command 3-84

0201hex ERR_OPT_INVLD_PARAM Invalid parameter 3-84

1010hex ERR_IBSETH_OPEN The IBSETHA file cannot be opened 3-85

1013hex ERR_IBSETH_READ The IBSETHA file cannot be read 3-85

1014hex ERR_IBSETH_NAME The device name cannot be found in the file 3-85

1016hex ERR_IBSETH_INTERNET The system cannot read the computer name/
host address

3-85

Table 3-9 Driver software messages

Code Error Message Cause Page

FL IL 24 BK-B-PAC UM E

3-78 654403

3.15 Error Messages

If the Device Driver Interface (DDI) generates one of the following error
messages as a negative acknowledgment, the function called previously
was not processed successfully.

3.15.1 General Error Messages

These error messages can occur when calling any DDI function.

ERR_INVLD_NODE_HD 0085hex

Cause: An invalid node handle was used when calling the function.

Remedy: Use the valid node handle of a successfully opened data channel.

ERR_INVLD_NODE_STATE 0086hex

Cause: An invalid node handle was used when calling the function. This is the
handle of a data channel that has already been closed.

Remedy: Open the data channel or use one that is already open.

ERR_NODE_NOT_READY 0087hex

Cause: The node to be used has not yet indicated it is ready, i.e., the node ready
bit has not been set in the status register of the coupling memory. The
cause of this may, for example, be a hardware fault.

Remedy: Check whether the bus terminal has been started up.

ERR_WRONG_DEV_TYP 0088hex

Cause: Incorrect node handle. An attempt has been made, e.g., to access the
mailbox interface with a node handle for the Data Interface.

Driver Software

654403 3-79

ERR_DEV_NOT_READY 0089hex

Cause: The local bus master was addressed, even though it was not ready.

Remedy: Request a reset of the local bus master using the
GetIBSDiagnostic() function on the ready bit in the diagnostic bit register.
Once this bit is set, the local bus master can be addressed.

ERR_INVLD_PERM 008Ahex

Cause: An attempt has been made to execute a function on a channel for which
the relevant access rights were not logged in when opening the data
channel. This error occurs, e.g., if you want to write to the Data Interface,
but read-only rights were specified on opening the channel (DDI_READ
constant).

Remedy: Close the channel and open it again with modified access rights

ERR_INVLD_CMD 008Chex

Cause: This error message is generated if you are working with older driver
libraries or older DLLs.

Remedy: Use an up-to-date driver.

ERR_INVLD_PARAM 008Dhex

Cause: This error message is displayed if invalid parameters are used in the
command.

Remedy: Check the validity of the parameters used.

FL IL 24 BK-B-PAC UM E

3-80 654403

3.15.2 Error Messages When Opening a Data Channel

ERR_NODE_NOT_PRES 0090hex

Cause: An attempt was made to open a data channel to a node, which is not
present.

Remedy: Select the following node.

IBS ETH: Node 1 = Local bus master

ERR_INVLD_DEV_NAME 0091hex

Cause: An unknown device name was specified as a parameter on opening a data
channel.

Remedy: Select a correct device name.

ERR_NO_MORE_HNDL 0092hex

Cause: Device driver resources used up. No further data channels can be opened.
If you exit a program without closing the data channels in use, they will stay
open. Additional data channels will be opened the next time the program is
started. After this program has been started a number of times, the
maximum permitted number of data channels that can be opened
simultaneously will be reached and no more will be available.

Remedy: Close a data channel that is not required or reinstall the device driver.
Always close all data channels used when exiting a program.

Driver Software

654403 3-81

3.15.3 Error Messages When Transmitting Messages/
Commands

ERR_MSG_TO_LONG 009Ahex

Cause 1: If an error message occurs when sending a command, then the length of
the command exceeds the maximum number of permitted parameters.

Remedy: Reduce the number of parameters.

Cause 2: If an error message occurs when receiving a message, then the length of
the message exceeds the length of the receive buffer specified.

Remedy: Increase the length of the receive buffer.

ERR_NO_MSG 009Bhex

Cause: This message occurs if an attempt has been made to retrieve a message
using the DDI_MXI_RcvMessage function, but no messages are present
for the node specified by the node handle.

ERR_NO_MORE_MAILBOX 009Chex

Cause 1: You have requested too many mailboxes within a short space of time.

Remedy: Increase the time interval between individual mailbox requests and start
the service: DDI_MXI_SndMessage once more.

Cause 2: No further mailboxes of the required size are available. Note the maximum
mailbox size that can be used (1020 bytes).

Remedy: Select a smaller mailbox or wait until a mailbox of the required size is free
again.

Cause 3: An attempt was made to address the coprocessor board (COP), but it is
faulty.

Remedy: Please get in touch with Phoenix Contact.

FL IL 24 BK-B-PAC UM E

3-82 654403

ERR_SVR_IN_USE 009Dhex

Cause: The send vector register for the node is in use.

Remedy: Address the register again or wait until the register is available again.

ERR_SVR_TIMEOUT 009Ehex

Meaning: If a message placed in the MPM by the local bus master is not retrieved by
the MPM node addressed, this node does not reset the acknowledge
message bit set by the local bus master, i.e., the MPM node addressed
does not indicate Message detected. After a specific time has elapsed
(timeout), the local bus master generates the error message
ERR_SVR_TIMEOUT. If this error message occurs repeatedly, it must be
assumed that the node being addressed is no longer ready to accept the
message.

Cause: Invalid node called:

An attempt was made, for example, to address the coprocessor board
(COP), which is faulty.

Remedy: Please get in touch with Phoenix Contact.

ERR_AVR_TIMEOUT 009Fhex

Meaning: An acknowledge message bit was set when reading a message to indicate
to the communication partner that a message has been processed and the
mailbox is free again. This bit must be reset by the communication partner
to indicate that it has recognized that the mailbox is free again. If this reset
does not take place within a set time, an error message is generated.

Cause: Invalid node called, e.g.,:

An attempt was made to address a coprocessor board (COP), which is
faulty or not present.

Remedy: Please get in touch with Phoenix Contact.

Driver Software

654403 3-83

3.15.4 Error Messages When Transmitting Process Data

These errors only occur when accessing the data interface (DTI).

ERR_AREA_EXCDED 0096hex

Meaning: Access exceeds the upper limit of the selected data area.

Cause 1: The data record to be read or written is too large. The function can read a
maximum of 4 Kbyte in one call.

Remedy: Only read or write data records with a maximum size of 4 Kbyte.

Cause 2: The upper area limit (4 Kbyte over the start of the device area) has been
exceeded.

Remedy: Make sure that the total of address offset, relative address, and data length
to be read does not exceed the upper area limit.

ERR_INVLD_DATA_CONS 0097hex

Cause: An invalid value was entered for data consistency (1, 2, 4 or 8 bytes).

Remedy: Specify a permissible data consistency with one of the following constants:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency (2 byte)
DTI_DATA_LWORD : Double word data consistency (4 byte)
DTI_DATA_64BIT : 64-bit data consistency (8 byte)

ERR_PLUG_PLAY 00A9hex

Cause: An attempt was made to gain write access to process data in Plug & Play
mode. This is not permitted for security reasons.

Remedy: Deactivate Plug & Play mode using the "Set_Value" command with the
value"0" or switch to read access.

ERR_STATE_CONFLICT 0100hex

Cause: A service was called, which is not permitted in this operating mode.

FL IL 24 BK-B-PAC UM E

3-84 654403

Remedy: Switch to an operating mode in which the desired call can be executed.

ERR_INVLD_CONN_TYPE 0101hex

Cause: A service was called, which cannot be executed via the selected
connection.

Remedy: Select a connection type via which the service can be executed.

ERR_ACTIVE_PD_CHK 0102hex

Cause: Process IN data monitoring failed to activate.

ERR_DATA_SIZE 0103hex

Cause: The data volume to be transmitted exceeds the maximum permissible size.

Remedy: Transmit the data in several cycles.

ERR_OPT_INVLD_CMD 0200hex

Cause: An attempt was made to execute an unknown (invalid) command.

Remedy: Select a valid command.

ERR_OPT_INVLD_PARAM 0201hex

Cause: An attempt was made to execute a command with unknown (invalid)
parameters.

Remedy: Enter permitted parameters.

ERR_ETH_RCV_TIMEOUT 1001hex

Cause: The time limit for receiving a data telegram was exceeded.

Driver Software

654403 3-85

Remedy: The Ethernet connection was interrupted or an incorrect IP address was
entered. Increase the timeout value.

ERR_IBSETH_OPEN 1010hex

Cause: The IBSETHA file cannot be opened.

Remedy: The IBSETHA file does not exist or is in the wrong directory.

ERR_IBSETH_READ 1013hex

Cause: The IBSETHA file cannot be read.

Remedy: The file exists but cannot be read. You may not have read access.

ERR_IBSETH_NAME 1014hex

Cause: The device name cannot be found in the file.

Remedy: The name, which was transferred to the DDI_DEVOPEN_NODE ()
function, is not in the IBSETHA file.

ERR_IBSETH_INTERNET 1016hex

Cause: The system cannot read the computer name/host address.

Remedy: The IP address entered in the IBSETHA file is incorrect or the symbolic
name cannot be found in the host file.

FL IL 24 BK-B-PAC UM E

3-86 654403

3.16 Example Program

The following diagram illustrates the structure of the station to which the
example program refers. One module with 8 digital outputs (IB IL DO 8,
Order No. 27 26 26 9) and one module with 8 digital inputs (IB IL DI 8,
Order No. 27 26 22 7) are connected to the FL IL 24 BK-B-PAC. The inputs
are individually jumpered to the outputs. The ground potential is created by
the internal potential jumper.

Figure 3-14 Structure of the station for the example program

3.16.1 Demo Structure Startup

The user is first prompted to specify the bus terminal on which the program
is to be executed. This is specified using the registry entries (position 01 to
99). The entry must always be two digits.

� �

�

�

�

�

�

�

�

�

	 �
 � �
 � �
 � � � � � � �
� � � � � � � � �
 � � � � � � �

� � ! � � �

� � �

� � �

� � �

	 � � �

� �

� �

� �

� �

� �

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� " � � � � � �

	 �
 � �
 � �
 � � � � � � � � �
 � �
 1 �
 � � �
 � �
 1 �
 �

Driver Software

654403 3-87

Function:

First, the status of Plug & Play mode is read. If P&P mode is activated
(value = 1) the program is terminated with the error message 00A9hex
(ERR_PLUG_PLAY), because process data cannot be written in P&P
mode for security reasons.
A check then determines whether the local bus in the station is running. If
not, the program is also terminated.

If both conditions are met, data items 1 to 255 are output from the output
module. Jumpering between the outputs and inputs enables the output
data to be read in again. The read data is compared with the output data.
If they are the same, "Comparison: OK" is output and if they are different,
"Comparison: FAILED" is output.

After the process data item "255" has been output, the program is
terminated after a 3-second waiting time.

The following figure is a screenshot of the program.

Figure 3-15 Screenshot of the example program

FL IL 24 BK-B-PAC UM E

3-88 654403

3.16.2 Example Program Source Code

/
==/
/* INCLUDE FILES AND CONSTANT DEFINITION */
/
==/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>

/***
 * Include files for the CLIENT library Windows version
**/
#include "ethwin32.h"

#define MAX_MSG_LENGTH 100
#define MXI_RCV_TIMEOUT 9

/************************************/
/* GLOBAL VARIABLES */
/************************************/
char OPEN_MXI[20] = "IBETH";
char OPEN_DTI[20] = "IBETH";

IBDDIHND mxiHnd, dtiHnd;
T_DDI_MXI_ACCESS mxiAcc;

T_DDI_DTI_ACCESS dtiAcc;
T_DDI_DTI_ACCESS readAcc;

/
**/

/* CreateConnection FUNCTION */
/* */
/* Parameters: NONE */
/* Return value: INTEGER (0 for OK, 111 for error) */
/* */
/
**/

int CreateConnection(void)

Driver Software

654403 3-89

{
IBDDIRET ret;
 /*Mailbox connection*/
 ret = DDI_DevOpenNode(OPEN_MXI,DDI_RW,&mxiHnd);
 if(ret != ERR_OK)
 {
 printf("\nError creating mailbox connection. Error code: %d", ret);
 printf("\n TEST ABORTED");
 fflush(stdout);
 return 111;
 }
 else
 {
 printf("\nMailbox connection...OK Handle: %d",mxiHnd);

 }
 /*Data channel connection*/
 ret = DDI_DevOpenNode(OPEN_DTI,DDI_RW,&dtiHnd);
 if(ret != ERR_OK)
 {
 printf("\nError creating data channel connection. Error code: %d",
ret);
 printf("\n TEST ABORTED");
 fflush(stdout);
 return 111;
 }
 else
 {
 printf("\nData channel connection...OK Handle: %d",dtiHnd);
 }

return 0;
} /
**/
/* DeleteConnection FUNCTION */
/* */
/* Parameters: NONE */
/* Return value: INTEGER (0 for OK, 111 for error) */
/* */
/
**/

int DeleteConnection(void)

FL IL 24 BK-B-PAC UM E

3-90 654403

{
 IBDDIRET ret;
 /* Close mailbox channel */
 ret = DDI_DevCloseNode(mxiHnd);
 if(ret != ERR_OK)
 {
 printf("\nError closing mailbox channel. Error code: %d",ret);
 fflush(stdout);
 return 111;
 }
 else
 {
 printf("\nClose mailbox channel...OK“);
 }

 /* Close data channel */
 ret = DDI_DevCloseNode(dtiHnd);
 if(ret != ERR_OK)
 {
 printf("\nError closing data channel. Error code: %d",ret);
 fflush(stdout);
 return 111;
 }
 else
 {
 printf("\nClose data channel...OK");
 }

return 0;
}

/
==/
/
==/
/* M A I N */
/
==/
/
==/

int main(void)
{

Driver Software

654403 3-91

 IBDDIRET locRet = 0;
 char Number[2];
 USIGN8 locMsgBlk[MAX_MSG_LENGTH];
 USIGN8 locReadBlk[MAX_MSG_LENGTH];
 int loci,i;
 USIGN16 ReadData = 0;
 USIGN16 anzahl = 255;
 USIGN16 PlugPlayModus = 111;
 T_IBS_DIAG infoPtr;
 time_t ltime;
 time_t starttime;

 USIGN16 Read1, Read2, Read3, Read4;

 // Display bus configuration
 printf("\n\n Required bus configuration: IB IL 24 DI 8 || IB IL 24 DO
8\n");

 // Entry of the controller number
 printf("\nController number: [Format xx] >> ");
 scanf ("%2s",Number);
 strcat(OPEN_MXI,Number);
 strcat(OPEN_DTI,Number);
 strcat(OPEN_MXI,"N1_M");
 strcat(OPEN_DTI,"N1_D");
 printf("\nOPEN_MXI: %s OPEN_DTI: %s",OPEN_MXI,OPEN_DTI);
 printf("\n === \n");

 // Create connections (DTI and MXI channels) to FL IL 24 BK-B-PAC
 locRet = CreateConnection();

 if(locRet != 0){
 printf("\nNo DTI/MXI connection -> Test aborted");
 exit(0);
 }

 Sleep(500);

 // Read Plug & Play mode
 mxiAcc.msgLength = 8;
 mxiAcc.msgBlk = locMsgBlk;

FL IL 24 BK-B-PAC UM E

3-92 654403

 IB_SetCmdCode (locMsgBlk, 0x0351);
 IB_SetParaCnt (locMsgBlk, 0x0002);
 IB_SetParaN (locMsgBlk, 0x01,0x0001);
 IB_SetParaN (locMsgBlk, 0x02,0x2240);

 locRet = DDI_MXI_SndMessage (mxiHnd, &mxiAcc);
 if (locRet != ERR_OK)
 {
 printf(" FAIL Error code %x", locRet);
 }
 // Get service confirmation
 mxiAcc.msgLength = 128;
 time(&starttime);
 locRet = 555;
 do
 {

 locRet = DDI_MXI_RcvMessage (mxiHnd, &mxiAcc);
 time(<ime);

 }
 while (((ltime - starttime) < MXI_RCV_TIMEOUT) && (locRet != ERR_OK));

 if (locRet != ERR_OK)
 {
 printf("\n\n Incorrect confirmation received, Error code 0x%04X",
locRet);
 }
 else
 {

 PlugPlayModus = IB_GetParaN(locMsgBlk, 0x04);
 printf("\nPlug & Play mode: %d",PlugPlayModus);

 }

 // If Plug & Play mode is active, no data can be written
 // -> End of test
 if(PlugPlayModus != 0) {
 printf("\nPlug & Play mode is active -> End of test\n");

 exit(0);
 }

 //Read IBS status
 locRet = GetIBSDiagnostic(dtiHnd, &infoPtr);
 if (locRet != ERR_OK)
 {

Driver Software

654403 3-93

 printf("\nError reading the INTERBUS status. Error code:
0x%04X",locRet);
 }
 else
 {
 if(infoPtr.state == 0x00E0) {

 printf("\nIBS status: RUNNING");
 } else {

 printf("\nIBS status: 0x%04X",infoPtr.state);
 }

 }

 // Reading and writing only permitted when the bus is running
 if(infoPtr.state != 0x00E0) {

 printf("\nIBS not in RUN state. -> Abort");
 exit(0);

 }

 // Write zero to the DI8 module
 loci = 1;
 printf("\nWrite, read, and compare data: \n");

 // Set buffer to ZERO
 dtiAcc.length = MAX_MSG_LENGTH;
 dtiAcc.address = 0;
 dtiAcc.dataCons = DTI_DATA_WORD; // Specify data consistency, word
consistency here
 dtiAcc.data = locMsgBlk;

 for(i = 0;i < MAX_MSG_LENGTH;i++)
 {
 locMsgBlk[i]=0;
 }

 locRet = DDI_DTI_WriteData(dtiHnd,&dtiAcc);

 if(locRet != ERR_OK){
 printf("\nError resetting buffer. Error code: 0x%04X",locRet);
 }

 Sleep(100);

 //Loop for reading and writing 255 data items

FL IL 24 BK-B-PAC UM E

3-94 654403

 do
 {
 //Writing data
 dtiAcc.length = MAX_MSG_LENGTH;
 dtiAcc.address = 0;
 dtiAcc.dataCons = DTI_DATA_WORD; //Specify data consistency
 dtiAcc.data = locMsgBlk;

 //DO8 is the first DO module
 IB_PD_SetDataN(locMsgBlk,0,loci);

 locRet = DDI_DTI_WriteData(dtiHnd,&dtiAcc);

 if(locRet != ERR_OK){
 printf("\nError writing data. Error code: 0x%04X",locRet);
 }

 Sleep(500);

 // Read data from module 1 (DI8)
 readAcc.length = MAX_MSG_LENGTH;
 readAcc.address = 0;
 readAcc.data = locReadBlk;

 locRet = DDI_DTI_ReadData(dtiHnd,&readAcc);

 if(locRet != 0){
 printf("\nError reading data. Error code: 0x%04X", locRet);
 }

 ReadData = IB_PD_GetDataN(locReadBlk,0x00);
 if (ReadData == loci) {

 printf("\rWritten: %3d Read: %3d Comparison: OK ",loci,
ReadData);
 }
 else {
 printf("\rWritten: %3d Read: %3d Comparison: FAILED",loci,
ReadData);
 }

 loci++;

 }

Driver Software

654403 3-95

 while(loci < 256);

 Sleep(500);

// Close channels to FL IL 24 BK-B-PAC again
 locRet = DeleteConnection();

 printf("\nEND\n");

 Sleep(3000);

return 0;

}

FL IL 24 BK-B-PAC UM E

3-96 654403

Section 4

654403 4-1

This section informs you about

– firmware functions

Firmware Services ..4-3

4.1 Overview ...4-3

4.1.1 Services That can be Used in
Every Operating Mode...4-3

4.1.2 Services That are Only Available in Expert Mode..........4-4

4.2 Notes on Service Descriptions ..4-4

4.2.1 Service "Name of the Service".......................................4-5

4.3 Services for Parameterizing the Controller Board.......................4-8

4.3.1 "Control_Parameterization" Service...............................4-8

4.3.2 "Set_Value" Service...4-10

4.3.3 "Read_Value" Service..4-12

4.3.4 "Initiate_Load_Configuration" Service4-14

4.3.5 "Load_Configuration" Service4-16

4.3.6 "Terminate_Load_Configuration" Service....................4-20

4.3.7 "Read_Configuration" Service4-22

4.3.8 "Complete_Read_Configuration" Service4-29

4.3.9 "Delete_Configuration" Service....................................4-32

4.3.10 "Create_Configuration" Service4-33

4.3.11 "Activate_Configuration" Service4-36

4.3.12 "Control_Device_Function" Service4-38

4.3.13 "Reset_Controller_Board" Service...............................4-40

4.4 Services for Direct INTERBUS Access4-42

4.4.1 "Start_Data_Transfer" Service.....................................4-42

4.4.2 "Alarm_Stop" Service...4-44

4.5 Diagnostic Services...4-45

4.5.1 "Get_Error_Info" Service..4-45

4.5.2 "Get_Version_Info" Service ...4-52

4.6 Error Messages for Firmware Services:....................................4-56

4.6.1 Overview..4-56

FL IL 24 BK-B-PAC UM E

4-2 654403

4.6.2 Positive Messages...4-57

4.6.3 Error Messages..4-57

Firmware Services

654403 4-3

4 Firmware Services

As it is not necessary to use each firmware service in both operating
modes, the following table indicates the assignment of the services to the
operating modes. If the services are not used as specified in the table, this
may cause the firmware to behave as follows:

– The service is not permitted in this mode and is rejected with a negative
acknowledgment

– The service is executed and terminated with a positive
acknowledgment, the effect of this service is removed by the firmware.

4.1 Overview

4.1.1 Services That can be Used in
Every Operating Mode

Please ensure that only one of the two modes (expert or P&P) is active.

Table 4-1 Overview of the services that can be used in every
operating mode

Code Services Page

0309hex Read_Configuration 4-22

030Bhex Complete_Read_Configuration 4-29

0316hex Get_Error_Info 4-45

032Ahex Get_Version_Info 4-52

0351hex Read_Value 4-12

0714hex Control_Device_Function 4-38

0750hex Set_Value 4-10

0956hex Reset_Controller_Board 4-40

FL IL 24 BK-PAC UM E

4-4 654403

4.1.2 Services That are Only Available in Expert Mode

Table 4-2 Services that are only available in expert mode

4.2 Notes on Service Descriptions

Use of
services

The use of a service involves sending a service request and evaluating the
service confirmation.

The codes of a service request and the subsequent service confirmation
only differ in binary notation in bit 15. Bit 15 of a service confirmation is
always set.
Thus, in hexadecimal notation, the code of a service confirmation is always
8000hex higher than the code of the service request which it follows.

Example
"Start_Data_Transfer"

Request:

Code Services Page

0306hex Initiate_Load_Configuration 4-14

0307hex Load_Configuration 4-16

0308hex Terminate_Load_Configuration 4-20

030Chex Delete_Configuration 4-32

030Ehex Control_Parameterization 4-8

0701hex Start_Data_Transfer 4-42

0710hex Create_Configuration 4-33

0711hex Activate_Configuration 4-36

1303hex Alarm_Stop 4-44

"Start_Data_Transfer_Request" 0701hex

Firmware Services

654403 4-5

Confirmation:

The service confirmation indicates the successful execution of a service via
a positive message and provides data, if requested. The service
confirmation indicates an error that occurred during service execution via a
negative message.

The Result parameter of the service confirmation shows if the service was
executed successfully (Result parameter = 0000hex), or if an error occurred
(Result parameter ≠ 0000hex describes the error cause).

Structure of a
service description

A service request/confirmation consists of a block of data words. The
parameters that are contained in this block are given in hexadecimal (hex)
or binary (bin) notation.

The structure of all service descriptions is as follows:

4.2.1 Service "Name of the Service"

Task: Describes the functions of the service.

Prerequisite: All conditions, which must be met before a service is called to enable
successful processing.

Syntax: Name_of_the_Service_Request Codehex

"Start_Data_Transfer_Confirmation" 8701hex = 0701hex +
8000hex

– Parameter
Result = 0000hex

⇒ Service executed
successfully

– Parameter
Result ≠ 0000hex

⇒ Error during service execution

Word 1 Code

Word 2 Parameter_Count

Word 3 Parameter

Word 4 Parameter

FL IL 24 BK-PAC UM E

4-6 654403

Key: Code: 0xxxhex Command code of the service request
(hexadecimal notation)

Parameter_Count: Number of subsequent words

0000hex If the service request does not have
parameters.

xxxxhex Otherwise, length of the parameter
data record (number of parameter
words).

Parameter: Parameters are described individually.
Parameters that are organized byte by byte are
separated by a vertical line. If a parameter
extends over several data words, this is
indicated by a line with three dots.

Parameter blocks: Parameter blocks are marked in bold outline.
The individual parameters are described in the
following section.

Syntax: Name_of_the_Service_Confirmation Codehex

Positive message

Negative message

Key: Code: 8xxxhex Message code of the service
confirmation

Word 5 Parameter

... ...

Parameter

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-7

Parameter_Count: Number of subsequent words

with a positive message:

xxxxhex Number of parameter words that are
transferred with a positive message

with a negative message:

xxxxhex Number of parameter words that are
transferred with a negative message

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

FL IL 24 BK-PAC UM E

4-8 654403

4.3 Services for Parameterizing the Controller
Board

4.3.1 "Control_Parameterization" Service

Task: This service initiates or terminates the parameterization phase. This is
necessary in order to ensure a defined startup behavior for the Inline
system. During the parameterization phase, for example, the validity of
read objects is not ensured. Once the parameterization phase has been
terminated, the MPM_Node_Parameterization_Ready bit is set in the
coupling memory. This means that during startup the host system
(computer/PLC) can recognize when the parameterization sequence that
is stored on the memory card has been successfully processed.

Syntax: Control_Parameterization_Request 030Ehex

Key: Code: 030Ehex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Control_Code: Function of the service

0001hex Initiate the parameterization phase
0000hex Terminate the parameterization phase

Word 1 Code

Word 2 Parameter_Count

Word 3 Control_Code

Bit 15 ... 0

Firmware Services

654403 4-9

Syntax: Control_Parameterization_Confirmation 830Ehex

Positive message

Negative message

Key: Code: 830EhexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-10 654403

4.3.2 "Set_Value" Service

Task: This service assigns new values to INTERBUS system parameters
(variables). A new value is only accepted if no error was detected when the
value range was checked.
The following system parameters are defined:

Table 4-3 System parameters

Variable ID System parameters Value/Comment

2216hex Up-to-date PD cycle time Read only

2240hex Plug & play mode 0: Plug & play mode inactive

1: Plug & play mode active

2275hex Expert mode 0: Expert mode inactive

1: Expert mode active

2277hex Fault Response Mode 1: Fault Reset Mode

2: Standard Fault Mode

0: Hold Last State Mode

2293hex Process Data Watchdog Timeout 0: Watchdog deactivated

200 - 65000: Timeout time in ms

Table 4-4 Available fault response modes

Fault Response
Mode

Valu
e

Function

Reset Fault Mode
(Default)

1 The digital outputs are set to "0" and the analog outputs are set
to the value configured by the user (Default = "0“)

Standard Fault Mode 0 All outputs are set to "0".

Hold Last State
Mode

2 All outputs retain their last value.

Firmware Services

654403 4-11

Syntax: Set_Value_Request 0750hex

Key: Code: 0750hex Command code of the service request

Parameter_Count: Number of subsequent words, 0x0003

Variable_Count: Number of system parameters to which new
values are to be assigned, 0x0001

Variable_ID: ID of the system parameter to which new values
are to be assigned (see Table 4-3), 2240hex

Value: New value of the system parameter, 0 or 1

Syntax: Set_Value_Confirmation 8750hex

Positive message

Negative message

Key: Code: 8750hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

Word 1 Code

Word 2 Parameter_Count

Word 3 Variable_Count

Word 4 Variable_ID 1. Parameter

Word 5 Value

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-12 654403

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

4.3.3 "Read_Value" Service

Task: This service can be used to read INTERBUS system parameters
(variables).

Syntax: Read_Value_Request 0351hex

Key: Code: 0351hex Command code of the service request

Parameter_Count: Number of subsequent words, 0x002

Variable_Count: Number of system parameters to be read,
0x0001

Variable_ID: ID of the system parameter to be read, 0x2240
0x2275

For a list of defined system parameters (variables), please refer to the
description of the "Set_Value" service (Table 4-3 on page 4-10).

Word 1 Code

Word 2 Parameter_Count

Word 3 Variable_Count

Word 4 Variable_ID 1. Parameter

Bit 15 ... 0

Firmware Services

654403 4-13

Syntax: Read_Value_Confirmation 8351hex

Positive message

Negative message

Key: Code: 8351hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message: 0004hex

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message. The
controller board executed the service
successfully.

xxxxhex Indicates a negative message. The
controller board could not execute the
service successfully The Result
parameter indicates why the service
could not be executed.

Variable_Count: Number of read system parameters, 0x0001

Variable_ID: ID of the read system parameter

Value: Value of the system parameter

Add_Error_Info: Additional information on the error cause

Word 1 Code
Word 2 Parameter_Count
Word 3 Result
Word 4 Variable_Count
Word 5 Variable_ID 1. system

parameterWord 6 Value

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-14 654403

4.3.4 "Initiate_Load_Configuration" Service

Task: The "Initiate_Load_Configuration“ service prepares the controller boards to
transmit a configuration with either the "Load_Configuration“ (0307hex) or
the "Complete_Load_Configuration“ (030Ahex) service onto the
INTERBUSmaster.

To transmit a new configuration frame (New_Config parameter = 0001hex),
specify the Frame_Reference and Device_Count parameters (total
number of devices).

Prerequisite: The parameterization phase must have been initiated with the
"Control_Parameterization" (030Ehex) service before.

Syntax: Initiate_Load_Configuration_Request 0306hex

Key: Code: 0306hex Command code of the service request

Parameter_Count: Number of subsequent words

xxxxhex = 3 + (Extension_Length + 1)/2

New_Config: 0001hex The configuration frame is created
again. An existing configuration frame
is overwritten.

0000hex Updates the existing configuration
frame.

Frame_Reference: 0x0001hex

Device_Count: Number of INTERBUS devices, which are
included in the existing configuration frame or
the new one to be loaded.

Extension_Length: 0x0000

Extension: Not supported. Entries are ignored.

Word 1 Code
Word 2 Parameter_Count
Word 3 New_Config
Word 4 Frame_Reference
Word 5 Device_Count
Word 6 Extension_Length Extension
... ... Extension

Bit 15 8 7 0

Firmware Services

654403 4-15

Syntax: Initiate_Load_Configuration_Confirmation 8306hex

Positive message

Negative message

Key: Code: 8306hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-16 654403

4.3.5 "Load_Configuration" Service

Task: The configuration frame describes each of the specified INTERBUS
devices in a separate numbered entry. The order and the numbering of the
entries corresponds to the physical bus configuration.

This service transfers the configuration data to the controller board in the
form of a list. Use the Used_ Attributes parameter to determine which
attributes the list should contain.

Prerequisite: Ensure that the controller board has been prepared for transmission with
the following services:

– "Control_Parameterization" (030Ehex)

– "Initiate_Load_Configuration" (0306hex)

Syntax: Load_Configuration_Request 0307hex

Key: Code: 0307hex Command code of the service request

Parameter_Count: Number of subsequent parameter words

xxxxhex The value depends on the
Entry_Count parameter and the
Used_Atrributes parameter.

The "Load_Configuration" service does not check the consistency
among the attributes but only whether this data is permitted in principle,
e g., whether it is within the value range.

Word 1 Code

Word 2 Parameter_Count

Word 3 Used_Attributes

Word 4 Start_Entry_No

Word 5 Entry_Count

Word 6 Configuration_Entry
1. Device

...

...

Configuration_Entry
nth device

Bit 15 ... 0

Firmware Services

654403 4-17

Used_Attributes: Choice of add-on attributes.
The parameter is a 16 bit field in which every bit
corresponds to an attribute. Set the
corresponding bit to 1 on the attribute that you
want to transmit (see the "Configuration_Entry"
syntax on page 4-17).

Settings for theUsed_Attributes parameter:

Bit 0 Device number
Bit 1 Device code

Example:
If the entries only consist of the device code,
enter the value 0002hex for the Used_Attributes
parameter (bit 1 is set).

Start_Entry_No: Number of the first device for which attributes are
to be transmitted

Entry_Count: Number of devices for which attributes are to be
transmitted

Configuration_Entry: Attribute values of the individual devices to be
transmitted according to their order in the
physical bus configuration (see syntax on
page 4-17)

Syntax "Configuration_Entry" Attribute

Attributes: Bus_Segment_No: Number of the bus segment where the device is
located
Value range: 01hex

According to the following syntax, enter attributes in the
"Configuration_Entry" parameter block that have been enabled with the
Used_ Attributes parameter (disabled attributes are not entered).

When several entries with several attributes are loaded at the same
time, first all the attributes of one entry are loaded, then those of the next
entry.

Word x Bus_Segment_No Position Device
Number

Word x+1 Length_Code ID_Code Device Code

Bit 15 8 7 0

FL IL 24 BK-PAC UM E

4-18 654403

Position: Physical location in the bus segment
Value ranges:

00hex ... 3Fhex (63dec) for an Inline station
The Bus_Segment_No and Position parameters
together form the device number.

Length_Code: Length code
The length code refers to the address space
required by the device in the host.

ID_Code: ID code
The ID code indicates the device type. It is
printed as Module Ident in decimal notation on
the modules.
The Length_Code and ID_Code parameters
together form the device number.

Syntax: Load_Configuration_Confirmation 8307hex

Positive message

Negative message

Key: Code: 8307hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex Always 1 parameter word

with a negative message:

0002hex Always 2 parameter words

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-19

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

FL IL 24 BK-PAC UM E

4-20 654403

4.3.6 "Terminate_Load_Configuration" Service

Task: This service terminates the loading of the configuration data in segments.
The service also checks the loaded configuration data for permissibility and
consistency. If no error is detected, the controller board stores the data in
the configuration directory under the Frame_Reference given in the
"Initiate_Load_Configuration" (0306hex) service. If an error is detected, the
service is acknowledged with a negative confirmation.

Remark: The Default_Parameter parameter can also be used to indicate whether
the process data channel (PD channel) is to be parameterized according
to the loaded configuration frame. In this case the firmware automatically
creates the process data reference list ("physical addressing") and/or a
communication relationship list (CRL).

Syntax: Terminate_Load_Configuration_Request 0308hex

Key: Code: 0308hex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Default_Parameter: Indicates whether a default parameterization of the
PD channel is to be carried out for the loaded
configuration:

0000hex No automatic parameterization
0001hex Automatic parameterization of the

process data channel through the creation
of the process data reference list

0003hex Automatic parameterization of the
processd data channel

The "Terminate_Load_Configuration" service does not activate the
newly loaded configuration immediately. It is only activated with the
"Activate_Configuration" service (0711hex).

Word 1 Code
Word 2 Parameter_Count
Word 3 Default_Parameter
Bit 15 .. 0

Firmware Services

654403 4-21

Syntax: Terminate_Load_Configuration_Confirmation 8308hex

Positive message

Negative message

Key: Code: 8308hexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-22 654403

4.3.7 "Read_Configuration" Service

Task: This service reads various entries of the configuration directory depending
on the Frame_Reference and Start_Entry_No parameters.

Syntax: Read_Configuration_Request 0309hex

Key: Code: 0309hex Command code of the service request

Parameter_Count: Number of subsequent words

0004hex 4 parameter words

Frame_Reference: Number of the configuration frame
0001hex Reads the reference configuration

0002hexreads in the physical bus structure

Only relevant if
Frame_Reference
> 0000hex

Used_Attributes: Attributes to be read.
The parameter is a 16 bit field in which every bit
corresponds to an attribute. Set the
corresponding bit to 1 on the attributes to be
read.
Settings for the Used_Attributes parameter:

Frame_
Reference

Start_
Entry_No

Entries Read by the Service

 0001hex 0000hex Header information of the configuration frame
(CFG_Header) selected with the
Frame_Reference parameter.

 0001hex >0000hex Entries of the configuration frame (CFG_Entry)
selected with the Frame_Reference parameter.
Either the entire configuration frame or only one
part, e.g., a single INTERBUS device
description can be read.

Word 1 Code

Word 2 Parameter_Count

Word 3 Frame_Reference

Word 4 Used_Attributes

Word 5 Start_Entry_No

Word 6 Entry_Count

Bit 15 ... 0

Firmware Services

654403 4-23

Bit 0 Device number
Bit 1 Device code

Start_Entry_No: Position of the first entry
0000hex Only reads the header information for

the configuration frame.
xxxxhex Reads the entries from the

configuration directory from this
number onwards

Entry_Count: Number of entries to be read

The positive message transmits the requested entries from the
configuration directory. Depending on the Frame_Reference and
Start_Entry_No parameters in the service request, it has one of the
following three structures.

Syntax Read_Configuration_Confirmation 8309hex

1. structure Positive message during service request with:

–
Frame_Reference

= 0000hex

– Start_Entry_No Not relevant
(= 0000hex)

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 More_Follows

Word 5 Frame_Reference = 0000hex

Word 6 Current_Configuration

Word 7 Configuration_Count

Word 8 Frame_Reference 1

FL IL 24 BK-PAC UM E

4-24 654403

2. structure Positive message during service request with:

3. structure Positive message during service request with:

–
Frame_Reference

> 0000

hex

– Start_Entry_No = 0000

hex

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 More_Follows

Word 5 Frame_Reference > 0000hex

Word 6 Used_Attributes Not relevant

Word 7 Start_Entry_No = 0000hex

Word 8 Frame_Device_Count

Word 9 Active_Device_Count

Word 10 Frame_IO_Bit_Count

Word 11 Active_IO_Bit_Count

Word 12 Frame_PCP_Device_Count

Word 13 Active_PCP_Device_Count

Word 14 Frame_PCP_Word_Count

Word 15 Active_PCP_Word_Count

Bit 15 ... 0

–
Frame_Reference

> 0000

hex

– Start_Entry_No > 0000

hex

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 More_Follows

Word 5 Frame_Reference

Firmware Services

654403 4-25

Negative message

Key: Code: 8309hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message and if Frame_Reference
= 0000hex:

xxxxhex = 5 + Configuration_Count

with a positive message and if Frame_Reference
> 0000hex and Start_Entry_No = 0000hex:

000Dhex 12 parameter words

with a positive message and if Frame_Reference
> 0000hex and Start_Entry_No > 0000hex:

xxxxhex The value depends on the number of
devices in the configuration frame and
the number of enabled attributes.

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message. The
service request has been executed

Word 6 Used_Attributes

Word 7 Start_Entry_No

Word 8 Entry_Count

Word 9 Configuration_Entry
1. Device

...

...

Configuration_Entry
nth device

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-26 654403

successfully. The data is available in
the following parameters.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed (see also
Add_Error_Info).

Add_Error_Info: Additional information on the error cause

More_Follows: 0000hex Indicates that all requested entries are
contained in the service confirmation.

0001hex Indicates that the service confirmation
does not contain all requested entries
as the amount of data is larger than
the mailbox (MXI) that is available for
the services. Call the service again to
read the remaining data.

Frame_Reference: Number of the read configuration frame.
The parameter contains the value that was
transferred with the service request.

Current_Configuration: Number of the currently activated configuration
frame.

Configuration_Count: Number of configured configuration frames.

Frame_Reference x: Numbers of all stored configuration frames in
ascending order

Frame_Device_Count: Number of configured INTERBUS devices in the
selected configuration frame

Active_Device_Count: Number of active INTERBUS devices in the
selected configuration frame

Frame_IO_Bit_Count: Number of configured I/O bits in the selected
configuration frame

Active_IO_Bit_Count: Number of active I/O bits in the selected
configuration frame

Used_Attributes: Read attributes
The parameter contains the value that was
transferred with the service request.

Firmware Services

654403 4-27

Start_Entry_No: Position of the first entry or 0000hex if only the
header information was read

Entry_Count: Number of entries that are transmitted by the
service confirmation.
The More_Follows parameter indicates if there
are further entries.

Configuration_Entry: Selected entries in the order of the physical bus
configuration.
The attributes contained in every entry are
enabled in the service request by the
Used_Attributes parameter (see the
"Configuration_Entry" syntax on page 4-27).

In the following, the structure of a configuration entry is shown where all
attributes are enabled.

Syntax "Configuration_Entry" Attribute:

Key: Attribute: Device Number

Bus_Segment_No: Number of the bus segment where the
INTERBUS device is located
Value: 00hex

Position: Physical location in the bus segment
Value range:

00hex to 40hex for an Inline station

A configuration entry for a device does not have to contain all attributes.
If an attribute is not enabled in the service request by the
Used_Attributes parameter, the configuration entry is reduced by the
relevant data words.

Word x Bus_Segment_No Position Device
Number

Word x+1 Length_Code ID_Code Device Code

Bit 15 8 7 0

FL IL 24 BK-PAC UM E

4-28 654403

Attribute: Device Code

Length_Code: Length code
The length code refers to the address space
required by the INTERBUS device in the host.

ID_Code: ID code
The ID code describes the INTERBUS device
function. It is printed as Module Ident in decimal
notation on the modules.

Firmware Services

654403 4-29

4.3.8 "Complete_Read_Configuration" Service

Task: This service reads entries in the configuration directory in the form of one
or more columns which have been selected with the Used_Attributes
parameter. It is specially adapted to the PLC programming requirements.

Remark: This service can be understood as a meta service for the
"Read_Configuration" service (0309 hex). The Start_Entry_No parameter
does not need to be specified, since this service reads all entries of the
configuration frame (Start_Entry_No = "1").

Syntax: Complete_Read_Configuration_Request 030Bhex

Key: Code: 030Bhex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex Always 1 parameter word

Used_Attributes: The parameter is a 16-bit field in which every bit
corresponds to an attribute. Set the
corresponding bits to 1 on the attribute that you
want to read.
Settings for the Used_Attributes parameter:

Bit 0 Device number
Bit 1 Device code

Word 1 Code

Word 2 Parameter_Count

Word 3 Used_Attributes

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-30 654403

Syntax: Complete_Read_Configuration_Confirmation 830Bhex

Positive message

Negative message

Key: Code: 830BhexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

xxxxhex The value depends on the number of
entries and the number and type of
attributes that you want to read.

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 More_Follows

Word 5 Frame_Reference

Word 6 Used_Attributes

Word 7 Start_Entry_No 0001hex

Word 8 Entry_Count

Word 9 Configuration_Entry
1. device

... ...

Configuration_Entry
nth device

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-31

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

More_Follows: 0000hex Indicates that all requested entries are
contained in the service confirmation.

0001hex Indicates that the service confirmation
does not contain all requested entries
as the amount of data is larger than
the mailbox (MXI) that is available for
the services. Call the
"Read_Configuration" service
(0309hex) to read the remaining data.

Frame_Reference: Number of the active configuration frame

Used_Attributes: Read attributes
The parameter contains the value that was
transferred with the service request.

Start_Entry_No: Number of the first entry.

0001hex With this service all entries are read
out, starting with the first entry.

Entry_Count: Number of entries that are transferred by the
service confirmation.

Configuration_Entry: Entries in the order of the physical bus
configuration.
The attributes contained in every entry are
enabled in the service request by the
Used_Attributes parameter. For the description
of the Configuration_Entry parameters see
"Read_Configuration" service (0309hex) on
page 4-22.

FL IL 24 BK-PAC UM E

4-32 654403

4.3.9 "Delete_Configuration" Service

Task: This service deletes an inactive configuration frame from the configuration
directory.

Syntax: Delete_Configuration_Request 030Chex

Key: Code: 030Chex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Frame_Reference: 0001hex

Syntax: Delete_Configuration_Confirmation 830Chex

Positive message

Negative message

Key: Code: 830Chex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

Word 1 Code

Word 2 Parameter_Count

Word 3 Frame_Reference

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-33

0002hex 2 parameter words

Result: Result of the service processing
0000hex Indicates a positive message.

The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

4.3.10 "Create_Configuration" Service

Task: This service causes the controller board to automatically generate a
configuration frame from the currently connected configuration and to
activate it in order to start the bus. After the execution of the service the
controller board is in the Active state.

The new configuration frame and the active configuration are stored in the
configuration directory under the number specified in the
Frame_Reference parameter. If there is already a configuration frame
under this number, this frame is overwritten. In addition, the controller
board generates default process data description lists, a default process
data reference list, and a default communication relationship list (CRL)
according to the currently connected bus configuration. In the device
descriptions the attributes are initialized as follows:
Device_Number: According to the active configuration
Length_Code: According to the active configuration
ID_Code: According to the active configuration
Device_Level: According to the active configuration
Group_Number: For all INTERBUS devices FFFFhex

(No group numbers are supported)
Device_State: All INTERBUS devices are active

FL IL 24 BK-PAC UM E

4-34 654403

Syntax: Create_Configuration_Request 0710hex

Key: Code: 0710hex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Frame_Reference: 0001hex

Syntax: Create_Configuration_Confirmation 8710hex

Positive message

Negative message

Key: Code: 8710hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

Word 1 Code

Word 2 Parameter_Count

Word 3 Frame_Reference

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-35

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

FL IL 24 BK-PAC UM E

4-36 654403

4.3.11 "Activate_Configuration" Service

Task: This service enables the controller board to check the configuration data of
the configuration frame for

– conformance with the currently connected configuration

– address overlaps

need to be checked.

If no errors are detected, the controller board activates this configuration
frame and runs ID cycles at regular intervals. The number of the
configuration frame is indicated to the controller board by the
Frame_Reference parameter.

Prerequisite: If you want to activate a configuration frame, another configuration frame
cannot be active at the same time. The "Deactivate_Configuration" is not
supported.

Syntax: Activate_Configuration_Request 0711hex

Key: Code: 0711hex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Frame_Reference: 0001hex

Word 1 Code

Word 2 Parameter_Count

Word 3 Frame_Reference

Bit 15 ... 0

Firmware Services

654403 4-37

Syntax: Activate_Configuration_Confirmation 8711hex

Positive message

Negative message

Key: Code: 8711hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-38 654403

4.3.12 "Control_Device_Function" Service

Task: This service can be used to send control commands to one or more
INTERBUS Inline devices, for example to acknowledge device status
errors or an alarm output.

Syntax: Control_Device_Function_Request 0714hex

Key: Code: 0714hex Command code of the service request

Parameter_Count: Number of subsequent words

Device_Function: 0004hexConf_Dev_Err_All:

Confirming the peripheral faults (PF) of all
devices.
devices. Set Entry_Count =
0000hex. The list of INTERBUS devices
is not required.

Entry_Count: 0000hex If Device_Function = 0004hex

Word 1 Code

Word 2 Parameter_Count (n)

Word 3 Device_Function

Word 4 Entry_Count List of
INTERBUS
devices

Word 5 Device_No

Word 6 Device_No

...

Word n+2 Device_No

Bit 15 ... 0

Firmware Services

654403 4-39

Syntax: Control_Device_Function_Confirmation 8714hex

Positive message

Negative message

Key: Code: 8714hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-40 654403

4.3.13 "Reset_Controller_Board" Service

Task: This service can be used to initiate a controller board reset.

Prerequisite: Before calling this service, ensure that the state of your system permits a
controller board reset.

Syntax: Reset_Controller_Board_Request 0956hex

Key: Code: 0956hex Command code of the service request

Parameter_Count: Number of subsequent words

0001hex 1 parameter word

Reset_Type: 0001hex cold restart
always executes a cold restart.

Syntax: Reset_Controller_Board_Confirmation 8956hex

Positive message

Negative message

Key: Code: 8956hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

Word 1 Code

Word 2 Parameter_Count

Word 3 Frame_Reference

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-41

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

FL IL 24 BK-PAC UM E

4-42 654403

4.4 Services for Direct INTERBUS Access

4.4.1 "Start_Data_Transfer" Service

Task: This service activates the cyclic data traffic on the bus.
After the execution of the service the controller board is in the Run state.

Prerequisite: Before the service is called, the controller board must be in the Active state,
i.e., a configuration frame has been activated and ID cycles are already
being run at regular intervals.

Syntax: Start_Data_Transfer_Request 0701hex

Key: Code: 0701hex Command code of the service request

Parameter_Count: Number of subsequent words

0000hex No parameter word

Word 1 Code

Word 2 Parameter_Count

Bit 15 ... 0

Firmware Services

654403 4-43

Syntax: Start_Data_Transfer_Confirmation 8701hex

Positive message

Negative message

Key: Code: 8701hexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-44 654403

4.4.2 "Alarm_Stop" Service

Task: This service triggers a long reset on the bus. Data traffic is stopped.
Modules with process data set their outputs to the value 0. The command
is executed directly after the current data cycle has been completed. After
the execution of the service the controller board is in the Ready state.

Syntax: Alarm_Stop_Request 1303hex

Key: Code: 1303hex Command code of the service request

Parameter_Count: Number of subsequent words

0000hex No parameter word

Syntax: Alarm_Stop_Confirmation 9303hex

Positive message

Negative message

Key: Code: 9303hex Message code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0001hex 1 parameter word

with a negative message:

0002hex 2 parameter words

Word 1 Code

Word 2 Parameter_Count

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-45

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

4.5 Diagnostic Services

4.5.1 "Get_Error_Info" Service

Task: This service can be used to read out the exact error cause and location
after a bus error has been indicated. A maximum of ten errors are
analyzed.

Syntax: Get_Error_Info_Request 0316hex

Key: Code: 0316hex Command code of the service request

Parameter_Count: Number of subsequent words

0000hex No parameter word

Word 1 Code

Word 2 Parameter_Count

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-46 654403

Syntax: Get_Error_Info_Confirmation 8316hex

Positive message, as long as error localization is still in progress

Positive message, if error localization has been completed

Negative message

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Entry_Count = 0001hex

Word 5 Error_Code = 0BDFhex
= FFFFhexWord 6 Add_Error_Info

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Entry_Count

Word 5 Error_Code
1. Error

Word 6 Add_Error_Info

Add_Error_Info

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-47

Key: Code: 8316hexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with positive message (during error localization):

0004hex 4 parameter words

with positive message (after error localization):

00xxhex = 2 + 2 × Entry_Count
(20 words, maximum)

with a negative message:

0002hex Always 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Entry_Count: 0001hex

Error_Code: Information on the error type

Add_Error_Info: with positive message:
Error location (Bus segment . Position), if it could
be located.
with negative message:
Additional information on the error cause via
error codes

FL IL 24 BK-PAC UM E

4-48 654403

Table 4-5 Supported Error Codes

Error Code Description

E_SM_CFG_NUM_OF_DEV_TOO_BIG 0A1Chex

Cause: You exceeded the permitted number of specified or connected INTERBUS
devices. The maximum permissible number of INTERBUS devices is 63.

Add_Error_Info: Number of specified or connected INTERBUS devices.

E_SM_CFG_IND_ADDR_LIST_TOO_BIG 0A2Ehex

Meaning: The permitted number of internal indirect address list entries was
exceeded. You have reached the firmware memory limit.

Cause: You have too many modules that occupy only one byte or one nibble of
address space in the data ring.

Remedy: – Reduce the number of modules occupying only one byte or one nibble
of address space. The maximum number of internal permitted indirect
address list entries is 384.

Arrange the modules so that the devices that require less than 1 word of
address space are next to each other.

Code Error Type Page

0x0A1C E_SM_CFG_NUM_OF_DEV_TOO_BIG 4-48

0x0A2E E_SM_CFG_IND_ADDR_LIST_TOO_BIG 4-48

0x0B02 E_PNM12_STATE_CONFLICT 4-49

0x0BB1 E_PNM12_DEVICE_STATE 4-49

0x0D10 E_PNM12_CONFIG_MISSING_DEVICE 4-49

0x0D20 E_PNM12_CONFIG_MAU_FAIL_DO 4-50

0x0D28 E_PNM12_CONFIG_MAU_FAIL DI 4-50

0x0D4C E_PNM12_CONFIG_INVALID_ID 4-50

0x0D80 E_PNM12_CONFIG_MULTI_ERR_OUT 4-51

0x0D9C E_PNM12_CONFIG_LB_TOO_LONG_OUT 4-51

0xFFFF CONTROLLER_DEVICE_NUMBER 4-51

Firmware Services

654403 4-49

E_PNM12_STATE_CONFLICT 0B02hex

Cause: 1. Maybe
- there is an empty configuration frame or
- the first device behind the bus coupler is defect or is missing.

Remedy: 1. - Activate a correct configuration frame
- Use the first device or aother functioning device.

E_PNM12_DEVICE_STATE 0BB1hex

Meaning: The specified Inline device indicates a peripheral fault.

Remedy: Check the specified Inline device.

Add_Error_Info: Device number (Segment . Position) of the Inline device.

E_PNM12_CONFIG_MISSING_DEVICE 0D10hex

Meaning: An Inline device is missing.

Cause: A device entered in the active configuration and not marked as switched off
is missing from the connected bus configuration.
The active configuration is the quantity of INTERBUS devices connected
to the INTERBUS system whose data is within the summation frame during
bus cycles. The active configuration may differ from the connected bus
configuration only when physically connected bus segments have been
switched off.

Remedy: Compare the active configuration with the connected bus configuration,
taking any disabled bus segments into account.

Add_Error_Info: Error location (Segment . Position).

FL IL 24 BK-PAC UM E

4-50 654403

E_PNM12_CONFIG_MAU_FAIL_DO 0D20hex

Meaning: The Medium Attachment Unit (MAU) firmware component diagnosed an
interruption of the data transmission.

Cause: Cable break on the data forward path of the incoming bus interface (IN) of
the indicated Inline device.

Remedy: Check the cables, connectors, and Inline connections for interruptions and
repair them, if required.

Add_Error_Info: Error location (Segment . Position).

E_PNM12_CONFIG_MAU_FAIL DI 0D28hex

Meaning: The Medium Attachment Unit (MAU) diagnosed an interruption of the data
transmission.

Cause: Cable break on the data return path of the incoming bus interface (IN) of
the indicated Inline device.

Remedy: Check the cables, connectors, and Inline connections for interruptions and
repair them, if required.

Add_Error_Info: Error location (Segment . Position).

E_PNM12_CONFIG_INVALID_ID 0D4Chex

Meaning: The specified Inline device has an invalid ID code.

Add_Error_Info: Error location (Segment . Position).

Firmware Services

654403 4-51

E_PNM12_CONFIG_MULTI_ERR_OUT 0D80hex

Meaning: Multiple error at the outgoing bus interface (OUT1) of the specified
INTERBUS device

Cause: Fault on the bus cable connected to this bus interface, of the following
INTERBUS device, or of a device of any subsequent local bus.

Remedy: Check this part of the system for:

– Missing or incorrect shielding of the bus cables (connectors)

– Missing or incorrect grounding/equipotential bonding

– Poor connections in the connector (loose contact, cold junction)

– Voltage dips on the communications power for remote bus devices

– Faulty fiber optic assembly

Add_Error_Info: Error location (Segment . Position).

E_PNM12_CONFIG_LB_TOO_LONG_OUT 0D9Chex

Meaning: The local bus connected directly to the controller board consists of more
Inline devices than have been entered in the active configuration.

Remedy: Check this local bus.

Add_Error_Info: Error location (Segment . Position).

CONTROLLER_DEVICE_NUMBER FFFF

FL IL 24 BK-PAC UM E

4-52 654403

4.5.2 "Get_Version_Info" Service

Task: This service can be used to read the type, version, manufacturing date, etc.
of the hardware and firmware of your controller board.

Syntax: Get_Version_Info_Request 032Ahex

Key: Code: 032Ahex Command code of the service request

Parameter_Count: Number of subsequent words

0000hex No parameter word

Syntax: Get_Version_Info_Confirmation 832Ahex

Positive message

Word 1 Code

Word 2 Parameter_Count

Bit 15 ... 0

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Words 4 +5 FW_Version (byte 1) FW_Version (byte 2)

FW_Version (byte 3) FW_Version (byte 4)

Words 6 ... 8 FW_State (byte 1) ...

... FW_State (byte 6)

Words 9 ... 11 FW_Date (byte 1) ...

... FW_Date (byte 6)

Words 12 ... 14 FW_Time (byte 1) ...

... FW_Time (byte 6)

Words 15 ... 24 Host_Type (byte 1) ...

... Host_Type (byte 20)

Words 25 +26 Host_Version (byte 1) Host_Version (byte 2)

Host_Version (byte 3) Host_Version (byte 4)

Words 27 ... 29 Host_State (byte 1) ...

... Host_State (byte 6)

Firmware Services

654403 4-53

Words 30 ... 32 Host_Date (byte 1) ...

... Host_Date (byte 6)

Words 33 ... 35 Host_Time (byte 1) ...

... Host_Time (byte 6)

Words 36 +37 Start_FW_Version (byte 1) Start_FW_Version (byte 2)

Start_FW_Version (byte 3) Start_FW_Version (byte 4)

Words 38 ... 40 Start_FW_State (byte 1) ...

... Start_FW_State (byte 6)

Words 41 ... 43 Start_FW_Date (byte 1) ...

... Start_FW_Date (byte 6)

Words 44 ... 46 Start_FW_Time (byte 1) ...

... Start_FW_Time (byte 6)

Words 47 ... 50 HW_Art_No (byte 1) ...

... HW_Art_No (byte 8)

Words 51 ... 65 HW_Art_Name (byte 1) ...

... HW_Art_Name (byte 30)

Words 66 +67 HW_Motherboard_ID
(byte 1)

HW_Motherboard_ID
(byte 2)

HW_Motherboard_ID
(byte 2)

HW_Motherboard_ID
(byte 4)

Word 68 HW_Version (byte 1) HW_Version (byte 2)

Words 69 ... 78 HW_Vendor_Name
(byte 1)

...

... HW_Vendor_Name
(byte 20)

Words 79 ... 84 HW_Serial_No (byte 1) ...

... HW_Serial_No (byte 12)

Words 85 ... 87 HW_Date (byte 1) ...

... HW_Date (byte 6)

Bit 15 ... 0

FL IL 24 BK-PAC UM E

4-54 654403

Negative message

Key: Code: 832AhexMessage code of the service
confirmation

Parameter_Count: Number of subsequent words

with a positive message:

0055hex 55 parameter words

with a negative message:

0002hex 2 parameter words

Result: Result of the service processing

0000hex Indicates a positive message.
The controller board executed the
service successfully.

xxxxhex Indicates a negative message.
The controller board could not execute
the service successfully. The Result
parameter indicates why the service
could not be executed.

Add_Error_Info: Additional information on the error cause

Version information for the hardware and firmware. Every byte indicates
the ASCII code for a character:

FW_Version: Version of the firmware kernel (4 bytes)
(e.g., 33 2E 39 37hex for "Version 3.97")

FW_State: Firmware status (6 bytes)
(e.g., 62 65 64 61 00 00hex for "beta" with
preliminary version)

FW_Date: Creation date of the firmware (6 bytes)
(e.g., 31 37 30 33 30 31hex for 17.03.01)

FW_Time: Creation time of the firmware (6 bytes)
(e.g., 31 34 31 30 32 30hex for 14:10:20)

Word 1 Code

Word 2 Parameter_Count

Word 3 Result

Word 4 Add_Error_Info

Bit 15 ... 0

Firmware Services

654403 4-55

Host_Type: Type of the host-specific firmware interface
(e.g., FL IL 24 BK) (20 byte)

Host_Version: Version of the host-specific firmware interface
(4 byte)

Host_State: Status of the host-specific firmware interface
(6 byte)

Host_Date: Creation date of the host-specific
firmware interface (6 byte)

Host_Time: Creation time of the host-specific
firmware interface (6 byte)

Start_FW_Version: Version of the start firmware (4 byte)

Start_FW_State: Status of the start firmware (6 byte)

Start_FW_Date: Creation date of the start firmware (6 byte)

Start_FW_Time: Creation time of the start firmware (6 byte)

HW_Art_No: Order No. of the controller board (8 byte)

HW_Art_Name: Order designation of controller board (30 byte)

HW_Motherboard_ID: Identification of the motherboard
(e.g., 32 43hex for "2C" (4 byte)

HW_Version: Version of the hardware (2 byte)

HW_Vendor_Name: Manufacturer of the controller board (20 byte)

HW_Serial_No: Serial number of the controller board (12 byte)

HW_Date: Creation date of the controller board (6 byte)

FL IL 24 BK-PAC UM E

4-56 654403

4.6 Error Messages for Firmware Services:

4.6.1 Overview

Table 4-6 Overview of error messages (according to error codes)

Code Services Page

0905hex INCORRECT_PARAMETER 4-57

0907hex NO_OBJECT 4-57

0918hex UNKNOWN_CODE 4-57

0922hex ACTION_HANDLER_CONFLICT 4-57

090Ahex INCORRECT_PARACOUNT 4-58

091Dhex ACTION_HANDLER_OVERLAP 4-58

0A02hex INCORRECT_STATE 4-58

0A18hex INCORRECT_ATTRIB 4-58

0A19hex FRAME_NOT_SO_BIG 4-58

0A22hex INCORRECT_TN_NUMBER 4-58

0A2Fhex DEVICE_ZERO 4-59

0A51hex INCORRECT_FRAME_REF 4-59

0E22hex INTERNAL_TIMEOUT 4-59

0E23hex FUNCTION_REG_NOT_FREE 4-59

0E24hex ACTION_ERROR 4-59

Firmware Services

654403 4-57

4.6.2 Positive Messages

ERR_OK 0000hex

Meaning After successful execution of a function, the firmware generates this
message as a positive acknowledgment.

Cause No errors occurred during execution of the function.

4.6.3 Error Messages

If the firmware generates one of the following codes as an
acknowledgment, this indicates that an error occurred during execution,
and the called function could not be executed successfully.

INCORRECT_PARAMETER 0905hex

Cause Incorrect parameters were entered when calling the function.

Remedy Check the specified parameters.

NO_OBJECT 0907hex

Cause The object called does not exist.

Remedy Check the object called or select another.

UNKNOWN_CODE 0918hex

Cause This service is not supported by this device.

Remedy Select another service.

ACTION_HANDLER_CONFLICT 0922hex

Cause An internal firmware error has occurred.

Additional info 0031hex:The error_type and/or error_location registers
cannot be read.

Additional info FFFFhex:Incorrect parameters detected during
Read_Configuration.

FL IL 24 BK-PAC UM E

4-58 654403

INCORRECT_PARACOUNT 090Ahex

Cause The number of parameters is incorrect.

Remedy Correct the number of parameters.

ACTION_HANDLER_OVERLAP 091Dhex

Cause Cannot read from or write to the EEPROM.

Additional info 0001hex:Write error

Additional info 0002hex:Read error

INCORRECT_STATE 0A02hex

Cause The called service is not permitted in the current status of the device.

Remedy Select another service or change the status of the device, so that the
desired service can be called.

INCORRECT_ATTRIB 0A18hex

Cause An invalid bit was activated in the Used_Attributes parameter.

Remedy Check that the selected attributes are permitted.

FRAME_NOT_SO_BIG 0A19hex

Cause When accessing the configuration frame, the end of the frame was
exceeded.

Remedy Modify access to the configuration frame.

INCORRECT_TN_NUMBER 0A22hex

Cause You specified inconsistent device numbers.

Remedy Enter the device numbers again.

Firmware Services

654403 4-59

DEVICE_ZERO 0A2Fhex

Cause The Initiate_Load_Configuration service could not be executed. The
number of connected Inline modules is either zero or greater than 63.

Remedy Change the number of connected Inline modules.

INCORRECT_FRAME_REF 0A51hex

Cause The Frame_Reference value is not one (1).

Remedy Change the Frame_Reference to 1.

INTERNAL_TIMEOUT 0E22hex

Cause The function_start_reg was not reset within the timeout.
Additional info xxxxhex:Timeout in hex

FUNCTION_REG_NOT_FREE 0E23hex

Cause The function_start_reg is not empty.

ACTION_ERROR 0E24hex

Cause The service could not be executed successfully.
Additional info 0005hex:Bus data could not be detected.
Additional info 00A5hex: The configuration could not be activated.

FL IL 24 BK-PAC UM E

4-60 654403

Section 5

654403 5-1

This section informs you about

– functions of the Modbus/TCP protocols

Modbus/TCP Protocol...5-3

5.1 Modbus Protocol ...5-4

5.1.1 Modbus Connections ...5-4

5.1.2 Modbus Interface ...5-4

5.1.3 Modubus Conformity Classes..5-4

5.1.4 Modbus Message Format ..5-5

5.1.5 Modbus Byte Sequence...5-5

5.1.6 Modbus Bit Sequence..5-6

5.2 Modbus Function Codes ...5-6

5.3 Modbus Table ...5-6

5.3.1 Example: Position of the Input / Output Data.................5-8

5.4 Executable Functions..5-9

5.5 Supported Function Codes ...5-10

5.5.1 Read Multiple Registers...5-10

5.5.2 Write Multiple Registers ...5-12

5.5.3 Read Coils ...5-13

5.5.4 Read Input Discretes ...5-14

5.5.5 Read Input Registers ...5-15

5.5.6 Write Coil ...5-16

5.5.7 Write Single Register ...5-17

5.5.8 Read Exception Status ..5-19

5.5.9 Data Format of the Exception Status5-19

5.5.10 Exception Responses ..5-20

5.5.11 Write Multiple Coils ..5-21

5.5.12 Read/Write Register...5-22

5.6 Reserved Registers for
Command and Status Words ..5-24

5.6.1 Command Word...5-24

5.6.2 Status Word ...5-25

FL IL 24 BK-B-PAC UM E

5-2 654403

5.6.3 Diagnostics Using the Analog Input Table5-26

5.6.4 Error Table ...5-26

5.7 Monitoring ...5-28

5.8 Modbus Monitoring..5-29

5.9 I/O Fault Response Mode ...5-30

5.9.1 The Power Up Table ..5-31

5.9.2 The Connection Monitoring Table................................5-33

Modbus/TCP Protocol

654403 5-3

5 Modbus/TCP Protocol

This section describes the realization of the Modbus / TCP communication
on the FL IL 24 BK-B-PAC.

Modbus Protocol

– Modbus connections

– Modbus interface

– Modubus conformity classes

– Modbus message format

Modbus Tables

– Register / Input Register table

– Input Discrete table

– Coil table

Supported Function Codes

– Read Multiple Registers

– Write Multiple Registers

– Read Coils

– Read Input Discretes

– Read Input Registers

– Write Coil

– Write Single Register

– Read Exception Status

– Write Multiple Coils

– Read Write Registers

FL IL 24 BK-B-PAC UM E

5-4 654403

5.1 Modbus Protocol

The bus coupler supports a Modbus / TCP server with the following
features:

5.1.1 Modbus Connections

The FL IL 24 BK-B-PAC supports up to 8 connections simultaneously.
Thanks to this capacity, a connection can be restored quickly. This implies
that the client can successfully restore an interrupted Modbus connection.

5.1.2 Modbus Interface

The Modbus communication via the FL IL 24 BK-B-PAC is supported via
the Modbus interface in accordance with standard port 502.

5.1.3 Modubus Conformity Classes

The FL IL 24 BK-B-PAC supports the
Modbus conformity classes 0 and 1.

Modbus/TCP Protocol

654403 5-5

5.1.4 Modbus Message Format

The Modbus/TCP protocol has a special message format with the following
structure:

5.1.5 Modbus Byte Sequence

Modbus uses the "Big Endian" format to display addresses and data
elements. This means that the most significant byte is sent first if a numeric
value (as individual or double word) that is larger than an individual byte is
transmitted. Example:
The amount 0x1234 is transmitted in the following order: 0x12 0x34.
The amount 0x12345678 is transmitted in the following order: 0x12 0x34
0x56 0x78.

Table 5-1 Modbus Message Format

Byte No. Meaning

BYTE 0 – 1 Transaction identifier: unique ID, generated by the client

BYTE 2 – 3 Protocol identifer = 0

BYTE 4 Length field (upper byte) = 0 (all messages < 256)

BYTE 5 Length field (lower byte) = number of the following bytes

BYTE 6 Unit identifier

BYTE 7 Modbus function code

BYTE 8 In data if required

The test fields "CRC 16" or "LRC" that usually are connected with
Modbus are not required for Modbus/TCP because the test sum
mechanism for TCP/IP and the safety layers are used to test the
transmission of data packets.

FL IL 24 BK-B-PAC UM E

5-6 654403

5.1.6 Modbus Bit Sequence

If a bit sequence is read into a register (for example %1 up to %l16), the bit
with the highest number (%I16 in this example) is the least significant bit.
The bit with the lowest number (%l1 in this example) is the most significant
bit.

5.2 Modbus Function Codes

The following function codes are supported:

Table 5-2 Supported Function Codes

5.3 Modbus Table

The definition of the reference tables for the Modbus protocol differs from
the internal structure of the FL IL 24 BK-B-PAC tables. Modbus refers to a
table of registers, input registers, discrete inputs as well as coils while the
FL IL 24 BK-B-PAC refers to a table of digital inputs (%I), coils (%Q),
analog inputs (%AI), analog outputs (%AQ) and special registers. The
following table shows that every Modbus table is illustrated in the FL IL 24
BK-B-PAC tables. Please observe that all data in this table refer to the

Code No. Function Code

fc1 Read Coils

fc2 Read Input Discretes

fc3 Read Multiple Registers

fc4 Read Input Registers

fc5 Write Coil

fc6 Write Single Register

fc7 Read Exception Status

fc15 Write Multiple Coils

fc16 Write Multiple Registers

fc23 Read/Write Registers

Modbus/TCP Protocol

654403 5-7

physical memory in the FL IL 24 BK. The FL IL 24 BK memory contains
Modbus names. For example, if you output the "Read Input Discretes" to
read the inputs in the table of the Modbus input discretes, the internal
FL IL 24 BK table %I that is shown in the table of the Modbus input
discretes will actually be read.

Table 5-3 Modbus Reference Tables

Modbus
Register
Tables

Register
Tables of
Modbus
Inputs

Modbus
Input
Discretes
Table

Modbus
Output
Tables

Internal FL IL 24 BK-B-
PAC Tables

P
ro

ce
ss

 D
at

a

0 – 191
(16 bit words)

0 – 191
(16 bit words)

0 – 3071
(Bit)

--- %I1 – 3072
(Bit)

192 - 383
(16 bit words)

192 - 383
(16 bit words)

--- --- %AI1 – 192
(16 bit words)

384 - 575
(16 bit words)

384 - 575
(16 bit words)

--- 0 – 3071
(Bit)

%Q1 – 3072
(Bit)

576 - 767

(16 bit words)

576 - 767

(16 bit words)

--- --- %AQ1 – 192
(16 bit words)

S
p

ec
ia

l r
eg

is
te

rs

1024 – 1087
(16 bit words)

1024 – 1087
(16 bit words)

--- --- Error table
(32 errors x two 16-bit
words per error)

1280
(16 bit words)

1280
(16 bit words)

--- --- Timeout table, timeout
value for connection
monitoring

2000
(16 bit words)

2000
(16 bit words)

--- --- Process data watchdog
timeout

2002
(16 bit words)

2002
(16 bit words)

--- --- Fault response mode

2004
(16 bit words)

2004
(16 bit words)

--- --- NetFail rReason

FL IL 24 BK-B-PAC UM E

5-8 654403

5.3.1 Example: Position of the Input / Output Data

Figure 5-1 Position of the input / output data modules

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 � � � � � � � � � 2 � � � � � �
� � �

� �
 � �
 1 �
 � �

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

% � "% 4 �% 4 "

� � � ' � � / �

� � � ' � �

� � � ' � .

 C
 C

C
 C
 C
 C
 C
 C
 C
 C

% 	 + 	 � � � � � , * � � 3 � � � 8 � ' � *
 � � ' ' � �

� � � ' � � / �

� � � ' � � / �

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

� � � � + � � � , * � � 3 � � �

� � � ' � � / �C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

8 � ' � *
 � � ' ' � �

� � � ' � � ! �

� � � ' � � " �

� � � ' � � " �

 C
 C
C
 C
 C
 C
 C
 C
 C
 C

% 	 + 	 � � � 4 * � , * � � 3 � � �8 � ' � *
 � � ' ' � �

� � � ' � � ! !

� � � ' � � ! �

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

� � � � + � 4 * � , * � � 3 � � �

C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

8 � ' � *
 � � ' ' � �

� � � ' � ! � !

� � � ' � � ! " C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

� � � ' � � ! / C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

� 4 �

% � �

� � � ' � � " �

� � � ' � � / �C
 C
 C
 C
 C
 C
 C
 CC
 C
 C
 C
 C
 C
 C
 C

� � " � � � � �

� �

�

�

�

�

�

�

�

�

	 �
 � �
 � �
 � � �
� � � � � � � � �
 � � � � � � �

� � �

� � �

	 � � �

� �

� �

� �

� �

� �

� � �

� � �

� � �

	 � � �

� �

� �

� � ! � � �

� � � � � � � " � " � � � � � � �

Regarding data assignment, please observe that some Inline modules
are configured via process data and thus occupy corresponding words
in the Modbus tables.

Modbus/TCP Protocol

654403 5-9

5.4 Executable Functions

The FL IL 24 BK-B-PAC does not differentiate between Modbus register
tables and Modbus input register tables. The Modbus register tables and
the Modbus input register tables are displayed in all four FL IL 24 BK-B-E/
A tables as well as in the error table.

Table 5-4 Executable Functions

Function Func-
tion

Code

READ/
WRITE

I_TAB. AI_TAB
.

Q_TAB. AQ_TA
B.

Special
Register

Read
Multiple

Registers

3 READ X X X X X

Read Input
Registers

4 READ X X X X X

Write
Multiple

Registers

16 WRITE --- --- X X X

Read Coils 1 READ --- --- X --- ---

Read Input
Discretes

2 READ X --- --- --- ---

Write Coil 5 WRITE --- --- X --- ---

Write
Single

Register

6 WRITE --- --- X X X

Read
Exception

Code

7 READ --- --- --- --- ---

Write
Multiple

Coils

15 WRITE --- --- X --- ---

Read/Write
Registers

23 READ/
WRITE

X X X X X

FL IL 24 BK-B-PAC UM E

5-10 654403

5.5 Supported Function Codes

The function codes are defined for Modbus memory mapping. For this
reason, Table 5-3 is practical for the specification of the appropriate areas.
This table shows the mapping of the designations in the Modbus tables via
the appropriate designations in the FL IL 24 BK-B-PAC tables.

The FL IL 24 BK-B-PAC supports the following Modbus function codes:

– Read Multiple Registers (function code 3)

– Write Multiple Registers (function code 16)

– Read Coils (function code 1)

– Read Input Discretes (function code 2)

– Read Input Registers (function code 4)

– Write Coil (function code 5)

– Write Single Register (function code 6)

– Read Exception Status (function code 7)

– Write Multiple Coils (function code 15)

– Read/Write Registers (function code 23)

5.5.1 Read Multiple Registers

This command reads 16-bit words from 1 to 125 in the Modbus register
table. Every part of the Modbus register table can be read using this
function. When reading the error table, however, the entire table must be
read. The Read Multiple Registers command has the following format:

The following descriptions of the function commands and response
messages start with the Modbus function codes (byte 0 is byte 7 of the
Modbus message format). See "Modbus message format".

Table 5-5 Read Multiple Registers

Byte No. Meaning

BYTE 0 Function code = 3

BYTE 1 - 2 Register table offset

BYTE 3 - 4 Word Count (1 - 125)

Modbus/TCP Protocol

654403 5-11

The response to the Read Multiple Registers command has the following
format:

If the command accesses an invalid offset or receives an invalid length, an
exception response with the following format is output:

Table 5-7 Answer to "Read Multiple Registers"

5.5.1.1 Example for Read Multiple Registers:

Register table offset = 0 and Word Count = 2 returns %I1-32.

Register table offset = 575 and Word Count = 2 returns %Q3057-3072 and
%AQ1.

Register table offset= 1024 and Word Count = 64 returns the error table.

Every combination of the register table offset and the Word Count that have
access onto the offets > 767 und < 1024 results in an exception response.
An exception response is also created when trying to read the erorr table
and to enter a register table offset >1024 or a Word Count<> 64.

The special register 1280 - 2004 can only be read when the Word Count
equals one.

Table 5-6 Answer to "Read Multiple Registers"

Byte No. Meaning

BYTE 0 Function code = 3

BYTE 1 Byte Count of the response
(Byte Count = 2 x Word Count in the command)

BYTE 2 – (B +1) Register values

Byte No. Meaning

BYTE 0 Function code = 0x83

BYTE 1 Exception response = 2

FL IL 24 BK-B-PAC UM E

5-12 654403

5.5.2 Write Multiple Registers

This command reads 16-bit words from 1 to 100 in the Modbus Register
table. Only that part of the Modbus Register table mapped to the %Q and
%AQ I/O tables can be written using this function.
The Write Multiple Registers command has the following format:

The response to the Read Multiple Registers command has the following
format:

Table 5-9 Answer to "Write Multiple Registers"

If the command accesses an invalid offset or receives an invalid length, an
exception response with the following format is output:

Table 5-10 Exception response to "Write Multiple Registers"

5.5.2.1 Example for Write Multiple Registers:

Register table offset = 384 and Word Count = 2 writes the register values
into %Q1-32

Register table offset = 575 and Word Count = 2 writes the register values
into %Q3057-3072 and %AQ1.

Table 5-8 Write Multiple Register

Byte No. Meaning

BYTE 0 Function code = 0x10

BYTE 1 - 2 Register table offset

BYTE 3 - 4 Word Count (1 - 100)

BYTE 5 Byte Count of the response (Byte Count =2x Word
Count)

BYTE 6 – (B + 5) Register values

Byte No. Meaning

BYTE 0 Function code = 0x10

BYTE 1 - 2 Register table offset (as in the command)

BYTE 3 - 4 Word Count (as in the command)

Byte No. Meaning

BYTE 0 Function code = 0x90

BYTE 1 Exception response = 2

Modbus/TCP Protocol

654403 5-13

Every combination of the register table offset and Word Count that either
accesses offset < 384 or > 767 results in an exception response.

5.5.3 Read Coils

This command reads from 1 to 2000 bits from the Modbus register table.
The Read Coils command has the following format:

Table 5-11 Read Coils

The response to the Read Coils command has the following format:

Table 5-12 Answer to "Read Coils"

Byte No. Meaning

BYTE 0 Function code = 1

BYTE 1 - 2 Coil table offset

BYTE 3 - 4 Bit Count (1 - 2000)

Byte No. Meaning

BYTE 0 Function code = 1

BYTE 1 Byte Count of the response, Byte Count (B) =
(Bit Count of the command + 7) /8.

BYTE 2 - (B+1) Bit values (the least significant bit is the first coil)

FL IL 24 BK-B-PAC UM E

5-14 654403

If the command accesses an invalid offset or receives an invalid length, an
exception response with the following format is output:

Table 5-13 Exception response to "Read Coils"

5.5.3.1 Example for Read Coils:

Coil table offset= 0 and Bit Count = 1 returns coil %Q1. Coil table offset= 0
and Bit Count = 2000 returns the coil values %Q1-2000.

Coil table offset = 4 and Bit Count = 13 returns the Coil values %Q5-17.

Every combination of the Coil table offset and the Bit Count that accesses
an offset > 3072 results in an exception response.

5.5.4 Read Input Discretes

This command reads from bit 1 to 2000 from the Modbus coil table.

The Read Input Discretes command has the following format:

Table 5-14 Read Input Discretes:

The response to the Read Input Discretes command has the following
format:

Table 5-15 Answer to "Read Input Discretes"

If the command accesses an invalid offset or receives an invalid length, an
exception response with the following format is output:

Byte No. Meaning

BYTE 0 Function code = 0x81

BYTE 1 Exception response = 2

Byte No. Meaning

BYTE 0 Function code = 2

BYTE 1 - 2 Input Discretes table offset

BYTE 3 - 4 Bit Count (1 - 2000)

Byte No. Meaning

BYTE 0 Function code = 2

BYTE 1 Byte Count of the response, B = (Bit Count of the
command + 7) /8.

BYTE 2 - (B + 1) Bit values (the least significant bit is the first coil)

Modbus/TCP Protocol

654403 5-15

Table 5-16 Exception response to "Read Input Discretes"

5.5.4.1

Examples for Read Digital Coils:

Input Discrete table offset = 0 and Bit Count = 1 returns input discrete %I1.
Input Discrete Table offset = 0 and Bit Count = 2000 returns input discrete
values %I1-2000.
Input Discrete Table offset = 4 and Bit Count = 13 returns input discrete
values %Q5-17.
Every combination of the Input Discretes table offset with Bit Count that
accesses offset > 3072 results in an exception response.

5.5.5 Read Input Registers

This command reads 16-bit words from 1 to 125 in the Modbus register
table. This command is used exactly like the Read Multiple Registers
command.

The Read Input Registers command has the following format:

Table 5-17 Read Input Discretes

The response to the Read Input Registers command has the following
format:

Byte No. Meaning

BYTE 0 Function code = 0x82

BYTE 1 Exception code

Byte No. Meaning

BYTE 0 Function code = 4

BYTE 1 - 2 Register table offset

BYTE 3 - 4 Word Count (1 - 125)

Table 5-18 Answer to "Read Input Registers"

Byte No. Meaning

BYTE 0 Function code = 4

BYTE 1 Byte Count of the response (B =2x Word Count in
the command)

BYTE 2 - (B +1) Register values

FL IL 24 BK-B-PAC UM E

5-16 654403

If the command accesses an invalid offset or receives an invalid length, an
exception response with the following format is output:

Table 5-19 Exception response to "Read Digital Input Registers"

5.5.5.1 Example for the Read Input Registers command:

For examples refer to the "Examples for Read Multiple Registers" section.

5.5.6 Write Coil

With this command, 1 bit is written into the Modbus coil table. The Write
Coil command has the following format:

Table 5-20 Write Coil

The response to the Write Coil command has the following format:

Table 5-21 Answer to "Write Coil"

If the command accesses an invalid offset, the exception response has the
following format:

Table 5-22 Exception response to "Write Coil"

Byte No. Meaning

BYTE 0 Function code = 0x84

BYTE 1 Exception response = 2

Byte No. Meaning

BYTE 0 Function code = 5

BYTE 1 - 2 Coil table offset

BYTE 3 = 0xFF for setting the Coil to ON (ON), = 0 for
setting the coil to OFF (OFF)

Byte 4 = 0

Byte No. Meaning

BYTE 0 Function code = 5

BYTE 1 -2 Coil table offset (as in the command)

BYTE 3 = 0xFF for setting the Coil to ON (ON), = 0 for
setting the coil to OFF (OFF)

Byte 4 = 0

Byte No. Meaning

Modbus/TCP Protocol

654403 5-17

5.5.6.1 Example for the Write Coil command:

With the Coil table offset = 0 and the value = 0xFF, the coil %Q1 is set to
ON (ON). With the coil table offset = 0 and the value = 0, the coil %Q1 is
set to OFF (OFF).
Each > 3072 coil table offset results in an exception response.

5.5.7 Write Single Register

With this command, a 16-bit word is written into the Modbus register table.
Only that part of the Modbus register table mapped to the %Q and %AQ I/
O tables as well as the first word of the error table can be written using this
function.

The Write Single Register command has the following format:

Table 5-23 Write Single Register

BYTE 0 Function code = 0x85

BYTE 1 Exception code = 2

Byte No. Meaning

BYTE 0 Function code = 6

BYTE 1 - 2 Register table offset

BYTE 3 - 4 Register value

FL IL 24 BK-B-PAC UM E

5-18 654403

The response to the Write Single Register command has the following
format:

Table 5-24 Response to "Write Single Register"

If the command accesses an invalid offset, the exception response has the
following format:

Table 5-25 Exception response to "Write Single Register"

5.5.7.1 Example for Write Single Register:

With the register table offset = 384, the register value is written in %Q1-16.

With the register table offset = 576, the register value is written in %AQ1.

Register table offset = 1024 and register value = 0 clears the Fault table.

With the register table offset = 1280 and a register value between 200 and
65,000, a new timeout value for the Modbus/TCP connection is written.

With the register table offset = 2,000 and a register value between 200 and
65,000, a new timeout value for the process data watchdog is written.

With the offset 2002, the fault response mode can be set.

1: Reset fault mode

0: Standard fault mode

2: Hold last state mode

Any Register Table offset < 384 or (> 576 and < 1024) or > 1024 produces
an exception response.

Byte No. Meaning

BYTE 0 Function code = 6

BYTE 1 - 2 Register table offset (as in the command)

BYTE 3 - 4 Register value (as in the command)

Byte No. Meaning

BYTE 0 Function code = 0x86

BYTE 1 Exception response = 2

Modbus/TCP Protocol

654403 5-19

5.5.8 Read Exception Status

This command reads a 8-bit status of the FL IL 24 BK-B-PAC.

The Read Exception Status command has the following format:

Table 5-26 Read Exception Status

The response to the Read Exception Status command has the following
format:

Table 5-27 Answer to "Read Exception Status"

5.5.9 Data Format of the Exception Status

Table 5-28 Data Format Exception Status

Byte No. Meaning

BYTE 0 Function code = 7

Byte No. Meaning

BYTE 0 Function code = 7

BYTE 1 Exception status

Byte No. Meaning

BYTE 0 - 5 Free

BYTE 6 Exception status

BYTE 7 Non-occupied error

FL IL 24 BK-B-PAC UM E

5-20 654403

5.5.10 Exception Responses

Table 5-29 Exception Responses

N
o.

Designation Meaning

1 ILLEGAL
FUNCTION

The transmitted function code is not supported by this device version.

2 ILLEGAL DATA
ADDRESS

The transmitted address is invalid for the device, the combination of
reference number and transmission length is wrong.
For a controller with 100 registers, an access with an offset of 96 and
a length of 4 is successful, an access with an offset of 96 and a length
of 5 can generate the exception response 2.

3 ILLEGAL DATA
VALUE

The value of this request is invalid for this device.

4 DEVICE FAILURE - The Plug & Play mode still is active and thus prevents
that data can be written.

- A NetFail has occurred.
- In addition, a DDI device could be connected

that has exclusive write access. In this case, it is
not possible to write data via Modbus/TCP.

Modbus/TCP Protocol

654403 5-21

5.5.11 Write Multiple Coils

This command writes 1 up to 800 bits into the Modbus Coil table

The Write Multiple Coils command has the following format:

Table 5-30 Write Multiple Coils

The response to the "Write Multiple Coils" command has the following
format:

Table 5-31 Response to "Write Multiple Coils"

If the command uses an invalid offset, the following exception response is
generated:

Table 5-32 Exception response to "Write Multiple Coils"

5.5.11.1 Example for the "Write Multiple Coils" command:

Coil table offset = 0 and Bit Count = 2 with a value of 3 sets coils %Q1 and
%Q2.
Coil table offset = 0 and Bit Count = 2 with a value of 0 sets back coils %Q1
and %Q2.

Byte No. Meaning

BYTE 0 Function code = 0x0F

BYTE 1 -2 Coil table offset

BYTE 3 - 4 Bit Count

BYTE 5 Byte Count

BYTE 6 – (B +5) Bit values (the least significant bit is the first coil)

Byte No. Meaning

BYTE 0 Function code = 0x0F

BYTE 1 - 2 Coil table offset (as in the command)

BYTE 3 - 4 Bit Count (as in the command)

Byte No. Meaning

BYTE 0 Function code = 0x8F

BYTE 1 Exception response = 2

FL IL 24 BK-B-PAC UM E

5-22 654403

5.5.12 Read/Write Register

This command reads 1 up to 125 words from a Modbus register table and
writes 1 up to 100 16-bit words into the Modbus register table. This
command can only write in that part of the table that reflects the coils (%Q
and %AQ).

The Write/Read command has the following format:

Table 5-33 Read/Write Register

The response to the "Read/Write Register" command has the following
format:

Table 5-34 Answer to Read/Write Register

If the command accesses an invalid offset, the exception response has the
following format:

Table 5-35 Exception response to "Read/Write Register"

Byte No. Description

BYTE 0 Function code = 0x17

BYTE 1 - 2 Read register table offset

BYTE 3 - 4 Number of words to be read (1 to 125)

BYTE 5 - 6 Write register table offset

BYTE 7 - 8 Number of words to be written (1 - 100)

BYTE 9 Number of bytes to be written (B = 2 x number of
words to be written)

BYTE 10 - (B
+9)

Write register values

Byte No. Description

BYTE 0 Function code = 0x17

BYTE 1 Byte Count (B = 2 x number of words to be read)

BYTE 2 - (B + 1) Read register values

Byte No. Description

BYTE 0 Function code = 0x97

BYTE 1 Exception code

Modbus/TCP Protocol

654403 5-23

5.5.12.1 Examples for the Read/Write Register command:

Register table offset = 0 and Word Count = 2 returns values of the input
discretes %1-32.
Register table offset = 575 and Word Count = 2 returns values of the coils
Q3057-3072 and the analog output %AQ1.
Register table offset = 1024 and Word Count = 64 returns an error table.
Every access onto a combination of register table offset and Word Count
between >767 and <1024 generates an exception response.

The attempt to read the error table with a register table offset >1024 and a
Word Count not equal to 64 also generates an exception response.

The special register 1280 - 2004 can only be read when the Word Count
equals one.
Register table offset = 384 and Word Count = 2 writes the register values
on the coils %Q1-32.

Register table offset = 575 and Word Count = 2 writes register values on
the coils %Q3057-3072 and the analog output %AQ1.

Every access onto a combination of Register table offset and Word Count
between >384 and <767 generates an exception response. The exception
is writing one word into registers 2000 and 2002.

FL IL 24 BK-B-PAC UM E

5-24 654403

5.6 Reserved Registers for
Command and Status Words

5.6.1 Command Word

The last word of the table for analog outputs is automatically reserved as
network interface command word via the bus terminal and starts using the
Modbus address 40767. With this command word and via the Ethernet host
controller, e.g. a PLC, the user can send commands with basic functions to
the module. These commands enable startup without configuration
software.

Table 5-36 Structure of the Analog Output Table

The bits are defined as shown in Section Table 5-37. The remaining bits
are reserved for later use. The activation/deactivation of the
Plug & Play mode is executed in the least significant bit of the command
word. Bit 0 = "0“ -> PP deactivated; Bit 0 = "1“ -> PP activated.
A NetFail occurred, in this way the command word can be acknowledged
by setting bit 1. If NetFail has been acknowledged successfully, bit 1 is
reset to "zero".

Table 5-37 Network Interface Command Word

Analog output table Address

First output word 576

577

.....

Command Word 767

.������!"/� .� �� �� �� �� �

<<� �
 � � - 	 � � � � � � 	 �

� � � � � � � � � 1 	 �

� � * + � = � � � 7
� � " � � � � �

<

� � � � � � � � 	 , 6 � � 	 � � � � � � �

Modbus/TCP Protocol

654403 5-25

5.6.2 Status Word

Table 5-38 Structure of the Input Discretes Table

The last word in the Input Discretes table are automatically reserved by the
bus terminal as network interface status word. The user can extract up-to-
date diagnostic information from this work using the Ethernet host
controller, e.g. a PLC, without using a configuration software.
Only two of the least significant bits have a function. Bit 0 = "0" means that
an error occured (e.g. a bus error). If bit 0 = "1", no error occured. Bit 1
indicates wether there is a NetFail (one) or not (zero).

Thus there are the following values for the status word:

0: An error occurred (e.g. bus error)
1: No error occurred.
2: A NetFail occurred.

Table 5-39 Status Word

Input Discretes Table Address

The first 16 input bits 0

1

.....

Status word 191

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved bits X X

FL IL 24 BK-B-PAC UM E

5-26 654403

5.6.3 Diagnostics Using the Analog Input Table

Table 5-40 Structure of the analog input table

The diagnostic data are entered into the analog input table. The diagnostic
status register and the diagnostic parameter register occupy the last two
words in the analog input table.

5.6.4 Error Table

Data Format of the Error Table

The Modbus client can access this internal error table that may contain 32
eror codes. This internal error table works accoring to the FIFO principle
(First In, First Out). This means that the 33rd error entry deletes the oldest
error entry.

An application can request all error entries or it can delete all entries via
one command sent to the bus termimal. Every error entry is written in two
words, beginning with the reference 1024 in the register table. All error
entries serve as information and do not stop the bus terminal.

Reading the Error Table Data

The complete error table can be read out using the "Read Multiple
Registers“command starting with the beginning of the error table (1024)
with a length of 64 registers. It is impossible only to read parts of the error
table. Empty entries contain the "0" value.

Analog input table Address

First input word 192

193

.....

Diagnostic status register 382

Diagnostic parameter register 383

Please note that the entries are shifted downwards so that the latest
error entry is located at position 1024.

Modbus/TCP Protocol

654403 5-27

Deleting the Error Table Data

If required, the application can write the value "0" into the first register
(1024) of the error table using the "Write Single Register" command. You
cannot write into any other register using the client.

Table 5-41 Registers

Entries in the Error Table

Every error entry is two words long and is positioned as follows:

If an error occurs, one or several bits are set within the diagnostic status
register (PF, BUS or CTRL) and a new entry is added to the error table. The
entry is displayed within the error table as shown below:

31..
................. 16

15
..

........... 0

Diagnostic parameter register Diagnostic status register

Table 5-42 Error Table

Error Table

Error No. Error entry (2 words)

1 Diagnostic parameter register Diagnostic status register

2 Diagnostic parameter register Diagnostic status register

3 Diagnostic parameter register Diagnostic status register

.....

32 Diagnostic parameter register Diagnostic status register

FL IL 24 BK-B-PAC UM E

5-28 654403

5.7 Monitoring

The three following monitoring mechanisms are available in the Modbus
operating mode.

Table 5-43 Monitoring functions

Monitoring Mechanism Monitoring …

... the Client
Application

... the
Individual
Channels

... the
Ethernet

Connection

... the Process
Data

Exchange

Process data watchdog
(process data monitoring),

X - - - X X

Host checking - - - - - - X - - -

DTI / Modbus monitoring. X X X - - -

Modbus/TCP Protocol

654403 5-29

5.8 Modbus Monitoring

You can activate a monitoring mechanism for every Modbus/TCP
connection so that the FL IL 24 BK-B-PAC can detect an error within a
network (e.g. a defect cable) or a client (operating system crash or error in
the TCP/IP protocol stack) and thus the module can respond accordingly.
The monitoring mechanism is activated when reading or writing via the
respective TCP connection for the first time.
In order to change the timeout value for the respective TCP connection,
write the new timeout value into the timeout table to the special address
1280 either using the fc 6 or the fc 16 function. The value of this entry is the
value of the timeout table. The time is indicated in milliseconds in the range
of 200 ms up to 65,000 ms.
A timeout value of "0“ deactivates the monitoring function. Values between
1 and 199 as well as values larger than 65,000 ms generate the exception
response 3 (ILLEGAL DATA VALUE).

After the first access via a Modbus/TCP function, all other accesses must
be executed using the timeout value entered. Otherwise, the fault response
mode is activated and the respective Modbus/TCP connection is closed.

The connection monitoring is only activated using the new timeout
values after the Modbus/TCP functions have been executed on the
respective TCP connection.

FL IL 24 BK-B-PAC UM E

5-30 654403

5.9 I/O Fault Response Mode

In case the communication connection is disrupted, the user can select the
reaction of the FL IL 24 BK-B-PAC beforehand. Use the DDI command
"Set_Value" on the object ID 2277hex . . The following table shows the
three possible reactions:

The following tables show the output tables as well as the actual output
values for the first two options. One table regards the restart after power up
and the other table regards the restart after an error occured. The output
table is part of the internal memory of the bus terminal, current output
values are the values of the output modules. The output table consists of
two parts: digital and analog outputs.

Table 5-44 Available Fault Response modes

Fault Response
Mode

Value Function

Reset fault mode
(Default)

1 The coils are set to "0" and the analog outputs are set to the
value configured by the user (default = „0“)

Standard fault mode 0 All outputs are set to "0".

Hold last state mode 2 All outputs retain their last value.

Modbus/TCP Protocol

654403 5-31

5.9.1 The Power Up Table

The output table of the FL IL 24 BK-B-PAC is stored in a non-volatile
memory. For this reason, all values of the output table are set to "0" after a
power up. Configuration settings are stored in a non-volatile EEPROM.

Example: A station consists of 3 I/O modules, an analog output module
with a length of 16 bit (AO), a coil module with a length of 16 bit (DO 16)
and a coil module with a length of 2bit (DO 2). After a power up, all outputs
are set to “0”:

If 0x0200 as first value after the power up is written into the output table of
the DO16 module, we get the following output values.

Then this is the "“0” plus the new values" state.

If values such as 0x0010 for AO, 0x0001 for DO 2 and 0xACDC for DO 16
have been written into the output table via several write accesses, we get
the following output values:

Table 5-45 Power Up-Sequence

Power Up-Sequence

Front View of
the FL IL 24 BK

Configuration): Reset Fault Mode Configuration): Last State Fault
Mode

Output table Actual output Output table Actual output

Power up “0” “0” “0” “0”

First read access
in output table
after power up.

“0” plus the new
values

Output table "0” plus the new
values

Output table

Operation “0” plus the sum
of all new values

Output table "0“ plus the sum
of all new values

Output table

Module AO DO 16 DO 2

Value 0x0000 0x0000 0x0000

Module AO DO 16 DO 2

Value 0x0000 0x0200 0x0000

FL IL 24 BK-B-PAC UM E

5-32 654403

Then this is the ""0" plus the sum of all new values" state.

Module AO DO 16 DO 2

Value 0x0010 0xACDC 0x0001

Modbus/TCP Protocol

654403 5-33

5.9.2 The Connection Monitoring Table

This table shows the output values after the connection monitoring or the
process data watchdog detected an error such as a disconnection or a
communication error while the voltage supply remains the same.

Table 5-46 Connection Monitoring Table

Connection Monitoring Table After Connection Abort, a Cable Interrupt or a
Communication Error.

Configuration of
the FL IL 24 BK

Configuration): "Reset Fault
Mode"

Configuration): "Last State Fault
Mode"

Output
table

Actual output Output table Actual output

Cable or
communication
error removal after
cable interrupt

Last values in
the output table

All coils are set
to "0".

Last values in the
output table

Values of the
output table

First write access
in the output table
after restoring the
connection

Last values in
the output table
plus the newly
written values

Output
table

Last values in the
output table plus
the newly written
values

Output table

Operation Last values in
the output table
plus all newly
written values

Output
table

Last values in the
output table plus
all newly written
values

Output table

FL IL 24 BK-B-PAC UM E

5-34 654403

Example: The last entries in the output table have the following values:

If 0x00A1 is written into the output table of the DO 16 as first value after
having restored the connection, we get the following actual output value:

This is the status "Last values in the output table plus the newly written
values".

If values such as 0x0010 for AO, 0x0001 for DO 2 and 0xACDC for DO 16
have been written into the output table via several write accesses, we get
the following output values:

This is the status "Last values in the output table plus the newly written
values".

Module AO DO 16 DO 2

Value 0x0123 0x4321 0x0002

Module AO DO 16 DO 2

Value 0x0123 0x00A1 0x0002

Module AO DO 16 DO 2

Value 0x0010 0xACDC 0x0001

Section 6

654403 6-1

This section informs you about

– technical data

– ordering data

Technical Data..6-3

6.1 Ordering Data..6-11

FL IL 24 BK-B-PAC UM E

6-2 654403

Technical Data

654403 6-3

6 Technical Data

General Data

Function Ethernet / Inline bus coupler

Housing dimensions (width x height x depth) 90 mm x 72 mm x 116 mm
(3.543 x 2.835 x 4.567 in.)

Permissible operating temperature (EN 60204-1) 0°C to 55°C (+32°F to +131°F)

Permissible storage temperature (EN 60204-1) -25°C to 85°C (-13°F to +185°F)

Degree of protection IP20, DIN 40050, IEC 60529

Class of protection Class 3 VDE 0106; IEC 60536

Humidity (operation) (EN 60204-1) 5% to 90%, no condensation

Humidity (storage) (EN 60204-1) 5% to 95%, no condensation

Air pressure (operation) 80 kPa to 108 kPa, 2,000 m (6,561.66 ft.)
above sea level

Air pressure (storage) 70 kPa to 108 kPa, 3,000 m (9,842.49 ft.)
above sea level

Preferred mounting position Perpendicular to a standard DIN rail

Connection to protective earth ground The functional earth ground must be connected
to the 24 V DC supply / functional earth ground
connection. The contacts are directly connected
to the potential jumper and FE springs on the
bottom of the housing. The terminal is grounded
when it is snapped onto a grounded DIN rail.
Functional earth ground is only used to discharge
interference.

Environmental compatibility Free from substances which would hinder
coating with paint or varnish (according to VW
specification)

Resistance to solvents Standard solvents

Weight 270 g, typical

FL IL 24 BK-B UM E

6-4 654403

24 V Main Supply / 24 V Segment Supply

Connection method Spring-cage terminals

Recommended cable lengths 30 m (98.43 ft.), maximum; do not route cable
through outdoor areas

Voltage continuation Via potential routing

Special demands on the voltage supply The supplies UM/US and the bus coupler supply
UBK do not have the same ground potential
because they are supplied by two separate
power supply units.

Behavior in the event of voltage fluctuations Voltages (main and segment supply) that are
transferred from the bus coupler to the potential
jumpers follow the supply voltages without delay.

Nominal value 24 V DC

Tolerance -15% / +20% (according to EN 61131-2)

Ripple ±5 %

Permissible range 19.2 V to 30 V

Current carrying capacity 8 A, maximum (total current of US and UM)

Safety equipment

Surge voltage Input protective diodes (can be destroyed by
permanent overload)

Pulse loads up to 1,500 V are short-circuited by
the input protective diode.

Polarity reversal Parallel diodes against polarity reversal; in the
event of an error the high current through the
diodes causes the preconnected fuse to blow.

This 24 V area must be fused externally. The power supply unit must be able to supply
4 times (400%) the nominal current of the external fuse, to ensure that the fuse blows
safely in the event of an error.

Technical Data

654403 6-5

24 V Bus Coupler Supply

Connection method Spring-cage terminals

Recommended cable lengths 30 m (98.43 ft.), maximum; do not route cable
through outdoor areas

Voltage continuation Via potential routing UL, UANA

Safety equipment

Surge voltage Input protective diodes (can be destroyed by
permanent overload)

Pulse loads up to 1,500 V are short-circuited by
the input protective diode.

Polarity reversal Serial diode in the lead path of the power supply
unit; in the event of an error only a low current
flows. In the event of an error the fuse in the
external power supply unit does not trip. Ensure
protection of 2 A by fuses through the external
power supply unit.

Nominal value 24 V DC

Tolerance -15% / +20% (according to EN 61131-2)

Ripple ±5%

Permissible range 19.2 V to 30 V

Minimum current consumption
at nominal voltage

92 mA
(At no-load operation, i.e., Ethernet connected,
no local bus devices are connected, bus inactive)

Maximum current consumption
at nominal voltage

1.5 A
(Loading the 7.5 V communications power with
2 A, the 24 V analog voltage with 0.5 A)

Observe the current consumption of the modules

Observe the logic current consumption of each device when configuring an Inline
station. This information is given in every module-specific data sheet. The current
consumption can differ depending on the individual module. The permissible number
of devices that can be connected therefore depends on the specific station structure.

FL IL 24 BK-B UM E

6-6 654403

24 V Module Supply

- Communications Power (Potential Routing)

Nominal value 7.5 V DC

Tolerance ±5%

Ripple ±1.5%

Maximum output current 2 A DC (observe derating)

Safety equipment Electronic short-circuit protection

- Analog Supply (Potential Jumper)

Nominal value 24 V DC

Tolerance -15% / +20%

Ripple ±5%

Maximum output current 0.5 A DC (observe derating)

Safety equipment Electronic short-circuit protection

Derating of the Communications Power and the Analog Terminal Supply

P [%] Loading capacity of the power supply unit for communications power and analog supply
in %

TA [°C] Ambient temperature in °C

�

� �

� �

� �

� �

" �

� �

� �

� �

�

� � �

� " � � � " � � � " � � � " � � � " " � " "
 �
 L M � N � � " " � � � #

�

L
O
N

Technical Data

654403 6-7

Power Dissipation

Formula to Calculate the Power Dissipation of the Electronics

PEL = PBUS + PPERI

Where
PEL Total power dissipation in the terminal
PBUS Power dissipation for bus operation without I/O load (permanent)
PPERI Power dissipation with I/O connected

ILn Current consumption of the device n from the communications power
n Index of the number of connected devices (n = 1 to a)
a Number of connected devices (with communications power supply)

Total current consumption of the devices from the 7.5 V communications power
(2 A, maximum)

ILm Current consumption of the device m from the analog supply
m Index of the number of connected analog devices (m = 1 to b)
b Number of connected analog devices (supplied with analog voltage)

Total current consumption of the devices from the 24 V analog supply
(0.5 A, maximum)

� 9 �
 H
 � = �
 A
 $
 > � = �

 C
 Σ
 � � % @
 $
 > � = �

 C
 Σ
 � � , @
%
 H
 �

(

,
 H
 �

8

�
A

�
A

Σ
 � � %
%
 H
 �

(

Σ
 � � %
,
 H
 �

8

FL IL 24 BK-B UM E

6-8 654403

Power Dissipation/Derating

Using the maximum currents 2 A (logic current) and 0.5 A (current for analog terminals) in the
formula to calculate the power dissipation when the I/O is connected gives the following result:

PPERI = 2.2 W + 0.35 W = 2.55 W

2.55 W corresponds to 100% current carrying capacity of the power supply unit in the derating
curves on page 6-6.

Make sure that the indicated nominal current carrying capacity in the derating curves is not
exceeded when the ambient temperature is above 40°C (104°F). Corresponding with the formula,
the total current carrying capacity of the connected I/O is relevant (PPERI). If, for example, no current
is drawn from the analog supply, the percentage of current coming from the communications power
can be increased.

Example:

Ambient temperature: 55°C (131°F)

1. Nominal current carrying capacity of the communications power and analog supply: 50 %
according to the diagram

ILLogic = 1 A, ILAnalog = 0.25 A

PPERI = 1.1 W + 0.175 W

PPERI = 1.275 W (corresponds to 50% of 2.55 W)

2. Possible logic current if the analog supply is not loaded:

PPERI = 1.1 W/A x ILLogic + 0 W

PPERI / 1.1 W/A = ILLogic

ILLogic = 1.275 W / 1.1 W/A

ILLogic = 1.159 A

Technical Data

654403 6-9

Safety Equipment

Surge voltage
(segment supply/main supply/bus coupler
supply)

Input protective diodes (can be destroyed by
permanent overload)

Pulse loads up to 1,500 V are short-circuited by
the input protective diode.

Polarity reversal
(segment supply/main supply)

Parallel diodes against polarity reversal; in the
event of an error the high current through the
diodes causes the preconnected fuse to blow.

Polarity reversal
(bus coupler supply)

Serial diode in the lead path of the power supply
unit; in the event of an error only a low current
flows. In the event of an error the fuse in the
external power supply unit does not trip. Ensure
protection of 2 A by fuses through the external
power supply unit.

Bus Interface of the Lower-Level System Bus

Interface Inline local bus

Electrical isolation No

Number of Inline terminals that can be connected

Limitation through software
Limitation through power supply unit

63, maximum
Maximum logic current consumption of the
connected local bus modules: Imax ≤ 2 A DC

Observe the current consumption of the modules

Observe the logic current consumption of each device when configuring an Inline
station. This information is given in every module-specific data sheet. The current
consumption can differ depending on the individual module. The permissible number
of devices that can be connected therefore depends on the specific station structure.

Interfaces

Ethernet interface

Number One

Connection format 8-pos. RJ45 female connector on the bus coupler

Connection medium Twisted pair cable with a conductor cross-section
of 0.14 mm2 to 0.22 mm2 (26 AWG to 24 AWG)

FL IL 24 BK-B UM E

6-10 654403

Cable impedance 100 Ω
Transmission rate 10 / 100 Mbps

Maximum network segment expansion 100 m (328.08 ft.)

Interfaces (Continued)

Protocols / MIBs

Supported protocols TCP/UDP
BootP

Mechanical Tests

Shock test according to IEC 60068-2-27 Operation: 25g, 11 ms period, half-sine shock
pulse
Storage/transport: 50g, 11 ms period, half-sine
shock pulse

Vibration resistance according to IEC 60068-2-6 Operation / storage / transport: 5g, 150 Hz,
Criterion A

Free fall according to IEC 60068-2-32 1 m (3.28 ft.)

Conformance With EMC Directives

Developed according to IEC 61000-6.2

IEC 61000-4-2 (ESD) Criterion B
6 kV contact discharge
6 kV air discharge (without labeling field)
8 kV air discharge (with labeling field in place)

IEC 61000-4-3 (radiated-noise immunity) Criterion A

IEC 61000-4-4 (burst) Criterion B

IEC 61000-4-5 (surge) Criterion B

IEC 61000-4-6 (conducted noise immunity) Criterion A

IEC 61000-4-8 (noise immunity against
magnetic fields)

Criterion A

EN 55011 (noise emission) Class A

Warning: Portable radiotelephone equipment (P ≥ 2 W) must not be operated any
closer than 2 m (6.56 ft). There should be no strong radio transmitters or ISM (industrial
scientific and medical) devices in the vicinity.

Technical Data

654403 6-11

6.1 Ordering Data

Description Order Designation Order No.

Ethernet / Inline bus coupler with connector and labeling
field

FL IL 24 BK-B-PAC 28 62 32 7

Connector, with color print IB IL SCN-8-CP 27 27 60 8

Labelling field IB IL FIELD 8 27 27 50 1

End clamp E/UK 12 01 44 2

Zack "Quick" marker strip ZBFM 6 ... (see CLIPLINE)

Factory Manager, network management software FL SWT 28 31 04 4

FL SNMP OPC gateway, software for information
exchange between SNMP and OPC

FL SNMP OPC SERVER 28 32 16 6

FL OPC SNMP AGENT 28 32 17 9

OPC server IBS OPC SERVER 27 29 12 7

CD-ROM with user documentation in pdf format, driver
software, example program, and OPC configurator

CD FL IL 24 BK 28 32 06 9

"Configuring and Installing the INTERBUS Inline
Product Range" User Manual

IB IL SYS PRO UM E 27 45 55 4

RJ45 gray connector set for linear cable (2 pieces) FL PLUG RJ45 GR/2 27 44 85 6

RJ45 connector set green for crossed cable (2 pieces) FL PLUG RJ45 GN/2 27 44 57 1

Double sheathed Ethernet cable FL CAT5 HEAVY 27 44 81 4

Flexible Ethernet cable FL CAT5 FLEX 27 44 83 0

Assembly tool for RJ45 connector FL CRIMPTOOL 27 44 86 9

Media converter 660 nm FL MC 10BASE-T/FO POF 27 44 51 3

Voltage supplies QUINT-PS ... see "INTERFACE" catalog

Keying profile (100 pcs./package) CP-MSTB see
"COMBICON" catalog

17 34 63 4

Zack markers for labeling terminals ZB 6 ... see "CLIPLINE" catalog

Labeling field covering one connector IB IL FIELD 2 27 27 50 1

Labeling field covering four connectors IB IL FIELD 8 27 27 51 5

Insert strips for IB IL FIELD 2, perforated, can be
labeled using a laser printer, marker pen or CMS
system
(72 strips, 1 pcs./package)

ESL 62X10 08 09 49 2

FL IL 24 BK-B UM E

6-12 654403

Insert strips for IB IL FIELD 8, perforated, can be
labeled using a laser printer, marker pen or CMS
system
(15 strips, 5 pcs./package)

ESL 62X46 08 09 50 2

DIN EN 50022 DIN rail, 2 meters (6.56 ft.) NS 35/7,5 PERFORATED
NS 35/7,5
UNPERFORATED

08 01 73 3
08 01 68 1

End clamp snapped on without tools
(50 pcs./package)

CLIPFIX 35 30 22 21 8

End clamp fixed using screws
(50 pcs./package)

E/UK 12 01 44 2

Screwdriver according to DIN 5264, blade
width 3.5 mm (0.138 in.)

SZF 1 - 0,6 x 3,5 12 04 51 7

Description Order Designation Order No.

5050df17

We Are Interested in Your Opinion!

We would like to hear your comments and suggestions concerning this
document.

We review and consider all comments for inclusion in future documen-
tation.

Please fill out the form on the following page and fax it to us or send your
comments, suggestions for improvement, etc. to the following address:

Phoenix Contact GmbH & Co. KG
Marketing Services
Dokumentation INTERBUS
32823 Blomberg
GERMANY

Phone +49 - (0) 52 35 - 3-00
Telefax +49 - (0) 52 35 - 3-4 18 08
E-Mail tecdoc@phoenixcontact.com

5050df17

FAX Reply
Phoenix Contact GmbH & Co. KG Date:
Marketing Services
Dokumentation INTERBUS Fax No: +49 - (0) 52 35 - 3-4 18 08

From:

Company: Name:

Department:

Address: Job function:

City, ZIP
code:

Phone:

Country: Fax:

Document:

Designation: FL IL 24 BK-B UM E Revision: 03 Order No.: 26 89 76 6

My Opinion on the Document

Form Yes In part No

Is the table of contents clearly arranged?

Are the figures/diagrams easy to understand/helpful?

Are the written explanations of the figures adequate?

Does the quality of the figures meet your expectations/needs?

Does the layout of the document allow you to find information
easily?

Contents Yes In part No

Is the phraseology/terminology easy to understand?

Are the index entries easy to understand/helpful?

Are the examples practice-oriented?

Is the document easy to handle?

Is any important information missing? If yes, what?

Other Comments:

	Please Observe the Following Notes:
	Requirements of the User Group
	Explanation of Symbols Used
	We Are Interested in Your Opinion
	Statement of Legal Authority

	About This Manual
	Table of Contents
	1 FL IL 24 BK-B-PAC
	1.1 General Functions
	1.1.1 Product Description

	1.2 Structure of the FL IL 24 BK-B-PAC Bus Coupler
	1.3 Local Status and Diagnostic Indicators
	1.4 Connecting the Supply Voltage
	1.5 Connector Assignment
	1.6 Supported Inline Modules
	1.7 Basic Structure of Low-Level �Signal Modules
	1.7.1 Electronics Base
	1.7.2 Connectors

	1.8 Function Identification and �Labeling
	1.9 Dimensions of Low-Level Signal �Modules
	1.10 Electrical Potential and �Data Routing
	1.11 Circuits Within an �Inline Station and Provision of the Supply Voltages
	1.11.1 Supply of the Ethernet Bus Coupler
	1.11.2 Logic Circuit UL
	1.11.3 Analog Circuit UANA
	1.11.4 Main Circuit UM
	1.11.5 Segment Circuit

	1.12 Voltage Concept
	1.13 Diagnostic and Status Indicators
	1.13.1 LEDs on the Ethernet Bus Coupler
	1.13.2 Supply Terminal Indicators
	1.13.3 Input/Output Module Indicators
	1.13.4 Indicators on Other Inline Modules

	1.14 Mounting/Removing Modules and �Connecting Cables
	1.14.1 Installation Instructions
	1.14.2 Mounting and �Removing Inline Modules
	1.14.3 Mounting
	1.14.4 Removal
	1.14.5 Replacing a Fuse

	1.15 Grounding an Inline�Station
	1.15.1 Shielding an Inline Station
	1.15.2 Shielding Analog Sensors and Actuators

	1.16 Connecting Cables
	1.16.1 Connecting Unshielded Cables
	1.16.2 Connecting Shielded Cables Using the Shield Connector

	1.17 Connecting the Power Supply
	1.17.1 Power Terminal Supply
	1.17.2 Provision of the Segment Voltage Supply at Power Terminals
	1.17.3 Requirements Regarding the Voltage Supplies

	1.18 Connecting Sensors and Actuators
	1.18.1 Connection Methods for Sensors and �Actuators
	1.18.2 Examples of Connections for Digital I/O Modules

	2 Startup/Operation
	2.1 Firmware Startup
	2.1.1 Sending BootP Requests

	2.2 Assigning an IP Address Using the Factory Manager
	2.2.1 BootP

	2.3 Manual Addition of Devices Using The Factory Manager
	2.4 Selecting IP Addresses
	2.4.1 Possible Address Combinations
	2.4.2 Subnet Masks
	2.4.3 Structure of the Subnet Mask

	2.5 Web-Based Management
	2.5.1 Calling Web-Based Management (WBM)
	2.5.2 Structure of the Web Pages
	2.5.3 Layout of the Web Pages
	2.5.4 Password Protection
	2.5.5 Process Data Access via XML

	2.6 Factory Line I/O Configurator
	2.6.1 Factory Line I/O Browser
	2.6.2 OPC Configurator

	3 Driver Software
	3.1 Documentation
	3.1.1 Hardware and Software User Manual

	3.2 The Software Structure
	3.2.1 Ethernet / Inline Bus Terminal Firmware
	3.2.2 Driver Software

	3.3 Support and Driver Update
	3.4 Transfer of I/O Data
	3.4.1 Position of the Process Data (Example)

	3.5 Startup Behavior of the Bus Terminal
	3.5.1 Plug & Play Mode
	3.5.2 Expert Mode
	3.5.3 Possible Combination of Modes
	3.5.4 Startup Diagrams of the Bus Coupler
	3.5.5 Changing and Starting a Con�figuration in P&P Mode

	3.6 Changing a Reference Configuration Using the Software
	3.6.1 Effects of Expert Mode
	3.6.2 Changing a Reference Configuration

	3.7 Description of the Device Driver Interface (DDI)
	3.7.1 Introduction
	3.7.2 Overview
	3.7.3 Working Method of the Device Driver Interface
	3.7.4 Description of the Functions of the� Device Driver Interface

	3.8 Monitoring Function
	3.8.1 Process Data Monitoring / Process Data Watchdog
	3.8.2 Connection Monitoring (Host Checking)
	3.8.3 Data Interface (DTI) Monitoring
	3.8.4 I/O Fault Response Mode
	3.8.5 Handling the NetFail Signal / Testing With ETH_SetNetFail

	3.9 IN Process Data Monitoring
	3.10 Notification Mode
	3.11 Programming Support Macros
	3.11.1 Introduction

	3.12 Description of the Macros
	3.12.1 Macros for Converting the Data Block of a Command
	3.12.2 Macros for Converting the Data Block of a Message
	3.12.3 Macros for Converting Input Data
	3.12.4 Macros for Converting Output Data

	3.13 Diagnostic Options of the Driver Software
	3.13.1 Introduction

	3.14 Positive Messages
	3.15 Error Messages
	3.15.1 General Error Messages
	3.15.2 Error Messages When Opening a Data Channel
	3.15.3 Error Messages When Transmitting Messages/ Commands
	3.15.4 Error Messages When Transmitting Process Data

	3.16 Example Program
	3.16.1 Demo Structure Startup
	3.16.2 Example Program Source Code

	4 Firmware Services
	4.1 Overview
	4.1.1 Services That can be Used in Every Operating Mode
	4.1.2 Services That are Only Available in Expert Mode

	4.2 Notes on Service Descriptions
	4.2.1 Service "Name of the Service"

	4.3 Services for Parameterizing the �Controller Board
	4.3.1 "Control_Parameterization" Service
	4.3.2 "Set_Value" Service
	4.3.3 "Read_Value" Service
	4.3.4 "Initiate_Load_Configuration" Service
	4.3.5 "Load_Configuration" Service
	4.3.6 "Terminate_Load_Configuration" Service
	4.3.7 "Read_Configuration" Service
	4.3.8 "Complete_Read_Configuration" Service
	4.3.9 "Delete_Configuration" Service
	4.3.10 "Create_Configuration" Service
	4.3.11 "Activate_Configuration" Service
	4.3.12 "Control_Device_Function" Service
	4.3.13 "Reset_Controller_Board" Service

	4.4 Services for Direct INTER�BUS Access
	4.4.1 "Start_Data_Transfer" Service
	4.4.2 "Alarm_Stop" Service

	4.5 Diagnostic Services
	4.5.1 "Get_Error_Info" Service
	4.5.2 "Get_Version_Info" Service

	4.6 Error Messages for Firmware Services:
	4.6.1 Overview
	4.6.2 Positive Messages
	4.6.3 Error Messages

	5 Modbus/TCP Protocol
	5.1 Modbus Protocol
	5.1.1 Modbus Connections
	5.1.2 Modbus Interface
	5.1.3 Modubus Conformity Classes
	5.1.4 Modbus Message Format
	5.1.5 Modbus Byte Sequence
	5.1.6 Modbus Bit Sequence

	5.2 Modbus Function Codes
	5.3 Modbus Table
	5.3.1 Example: Position of the Input / Output Data

	5.4 Executable Functions
	5.5 Supported Function Codes
	5.5.1 Read Multiple Registers
	5.5.2 Write Multiple Registers
	5.5.3 Read Coils
	5.5.4 Read Input Discretes
	5.5.5 Read Input Registers
	5.5.6 Write Coil
	5.5.7 Write Single Register
	5.5.8 Read Exception Status
	5.5.9 Data Format of the Exception Status
	5.5.10 Exception Responses
	5.5.11 Write Multiple Coils
	5.5.12 Read/Write Register

	5.6 Reserved Registers for Command and Status Words
	5.6.1 Command Word
	5.6.2 Status Word
	5.6.3 Diagnostics Using the Analog Input Table
	5.6.4 Error Table

	5.7 Monitoring
	5.8 Modbus Monitoring
	5.9 I/O Fault Response Mode
	5.9.1 The Power Up Table
	5.9.2 The Connection Monitoring Table

	6 Technical Data
	General Data
	24 V Main Supply / 24 V Segment Supply
	24 V Bus Coupler Supply
	24 V Module Supply
	Derating of the Communications Power and the Analog Terminal Supply
	Power Dissipation
	Power Dissipation/Derating
	Safety Equipment
	Bus Interface of the Lower-Level System Bus
	Interfaces
	Interfaces (Continued)
	Protocols / MIBs
	Mechanical Tests
	Conformance With EMC Directives
	6.1 Ordering Data

	We Are Interested in Your Opinion!

